Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1363457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855111

RESUMEN

Introduction: Human infections with the food-borne enteropathogen Campylobacter jejuni are responsible for increasing incidences of acute campylobacteriosis cases worldwide. Since antibiotic treatment is usually not indicated and the severity of the enteritis directly correlates with the risk of developing serious autoimmune disease later-on, novel antibiotics-independent intervention strategies with non-toxic compounds to ameliorate and even prevent campylobacteriosis are utmost wanted. Given its known pleiotropic health-promoting properties, curcumin constitutes such a promising candidate molecule. In our actual preclinical placebo-controlled intervention trial, we tested the anti-microbial and anti-inflammatory effects of oral curcumin pretreatment during acute experimental campylobacteriosis. Methods: Therefore, secondary abiotic IL-10-/- mice were challenged with synthetic curcumin via the drinking water starting a week prior oral C. jejuni infection. To assess anti-pathogenic, clinical, immune-modulatory, and functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria were cultured, clinical signs and colonic histopathological changes quantitated, pro-inflammatory immune cell responses determined by in situ immunohistochemistry and intestinal, extra-intestinal and systemic pro-inflammatory mediator measurements, and finally, intestinal epithelial barrier function tested by electrophysiological resistance analysis of colonic ex vivo biopsies in the Ussing chamber. Results and discussion: Whereas placebo counterparts were suffering from severe enterocolitis characterized by wasting symptoms and bloody diarrhea on day 6 post-infection, curcumin pretreated mice, however, were clinically far less compromised and displayed less severe microscopic inflammatory sequelae such as histopathological changes and epithelial cell apoptosis in the colon. In addition, curcumin pretreatment could mitigate pro-inflammatory innate and adaptive immune responses in the intestinal tract and importantly, rescue colonic epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-mitigating effects of exogenous curcumin was also observed in organs beyond the infected intestines and strikingly, even systemically given basal hepatic, renal, and serum concentrations of pro-inflammatory mediators measured in curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-Campylobacter and disease-mitigating including anti-inflammatory effects upon oral curcumin application observed here highlight the polyphenolic compound as a promising antibiotics-independent option for the prevention from severe acute campylobacteriosis and its potential post-infectious complications.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Curcumina , Animales , Curcumina/administración & dosificación , Curcumina/farmacología , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/inmunología , Ratones , Campylobacter jejuni/efectos de los fármacos , Administración Oral , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Interleucina-10/metabolismo , Enfermedad Aguda , Antibacterianos/administración & dosificación
2.
Front Pharmacol ; 14: 1301800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044939

RESUMEN

The oleoresin myrrh has been used for centuries as an anti-inflammatory remedy for a variety of diseases and is said to have a protective effect on the intestinal epithelium. An intact epithelial barrier function is the prerequisite for a healthy gut. Inflammatory and infectious diseases of the intestine, in particular, lead to barrier impairment resulting in leak-flux diarrhea and mucosal immune responses. Therefore, the aim of the present study was to investigate the protective effect of myrrh in an experimental inflammatory situation, namely, under the influence of IL-13, one of the key cytokines in ulcerative colitis. We used human intestinal epithelial HT-29/B6 cell monolayers for functional and molecular assessment of the epithelial barrier under IL-13 and myrrh treatment. IL-13 induced a loss in barrier function that was fully restored with myrrh treatment, as shown by transepithelial electrical resistance measurements. The molecular correlate of the IL-13-mediated barrier dysfunction could be assigned to an upregulation of the channel-forming tight junction (TJ) protein claudin-2 and to a subcellular redistribution of the TJ protein tricellulin, loosening the sealing of tricellular TJs. Moreover, IL-13 exposure leads to an increase in the number of apoptotic cells, contributing to the leak pathway of barrier dysfunction. Myrrh protected against changes in TJ deregulation and decreased the elevated apoptotic ratio under IL-13. The protective effects are mediated through the inhibition of the STAT3 and STAT6 pathway. In conclusion, our results demonstrate that myrrh exhibits antagonizing effects against IL-13-induced barrier impairment in a human intestinal cell model. These data suggest the use of myrrh as a promising option in the treatment of inflammatory bowel disease.

3.
Cells ; 12(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132165

RESUMEN

BACKGROUND: In patients with diarrhea-predominant irritable bowel syndrome (IBS-D), the diarrheal mechanisms are largely unknown, and they were examined in this study on colon biopsies. METHODS: Electrophysiological measurements were used for monitoring functional changes in the diarrheic colon specimens. In parallel, tight junction protein expression was analyzed by Western blot and confocal laser-scanning microscopy, and signaling pathway analysis was performed using RNA sequencing and bioinformatics. RESULTS: Epithelial resistance was decreased, indicating an epithelial leak flux diarrheal mechanism with a molecular correlate of decreased claudin-1 expression, while induction of active anion secretion and impairment of active sodium absorption via the epithelial sodium channel, ENaC, were not detected. The pathway analysis revealed activation of barrier-affecting cytokines TNF-α, IFN-γ, IL-1ß and IL-4. CONCLUSIONS: Barrier dysfunction as a result of epithelial tight junction changes plays a role in IBS-D as a pathomechanism inducing a leak flux type of diarrhea.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Regulación hacia Abajo , Mucosa Intestinal/patología , Diarrea/metabolismo
4.
Toxins (Basel) ; 15(11)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999506

RESUMEN

BACKGROUND: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin's effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. METHODS: Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. RESULTS: Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. CONCLUSIONS: Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Humanos , Proteínas de Uniones Estrechas/metabolismo , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Uniones Estrechas/metabolismo , Clostridioides , Colon , Diarrea , Inflamación/metabolismo , Organoides , Mucosa Intestinal
5.
Antibiotics (Basel) ; 12(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37760684

RESUMEN

Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.

6.
Biomolecules ; 13(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36979384

RESUMEN

BACKGROUND: Campylobacter jejuni (C. jejuni) is one of the most common causes of bacterial gastroenteritis worldwide. One sequela of this infection is the development of post-infectious irritable bowel syndrome (PI-IBS). It has been suggested that a dysfunctional intestinal barrier may promote IBS development. We aimed to test this hypothesis against the background of the leaky gut concept for low-grade inflammation in PI-IBS. METHODS: We identified patients with persistent PI-IBS symptoms after C. jejuni infection. During sigmoidoscopy, forceps biopsies were obtained for electrophysiological measurements of epithelial transport and barrier function in miniaturized Ussing devices. C. jejuni absence was checked by PCR and cytokine production with immunohistochemistry. RESULTS: In PI-IBS, the epithelial resistance of the colon epithelium was unaltered, reflecting an intact paracellular pathway. In contrast, temperature-dependent horseradish peroxidase (HRP, 44 kDa) permeation increased. Short-circuit current (Isc) reflecting active anion secretion and ENaC-dependent electrogenic sodium absorption was unaffected. Early endosome antigen-1 (EEA1) and IL-4 levels increased. C. jejuni is not incorporated into the resident microbiota of the colon mucosa in PI-IBS. CONCLUSIONS: In PI-IBS after C. jejuni infection, macromolecule uptake via endocytosis was enhanced, leading to low-grade inflammation with pro-inflammatory cytokine release. The findings will allow C. jejuni-induced pathomechanisms to be targeted during infection and, thereafter to reduce sequelae such as PI-IBS.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/microbiología , Campylobacter jejuni/metabolismo , Inflamación/complicaciones , Infecciones por Campylobacter/complicaciones , Infecciones por Campylobacter/microbiología , Citocinas/metabolismo
7.
Cells ; 12(2)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36672170

RESUMEN

BACKGROUND: The underlying pathophysiology of irritable bowel syndrome (IBS) is still unclear. Our aim was to investigate the pathophysiological mechanisms of diarrhea, constipation, and antigen uptake in mixed-type IBS (IBS-M). METHODS: Colonoscopic biopsies were obtained from IBS-M patients. Epithelial transport and barrier function of colonic mucosae were characterized in Ussing chambers using impedance spectroscopy. Mucosal permeability to macromolecules was measured. Western blotting for tight junction (TJ) proteins was performed and their subcellular localization was visualized by confocal microscopy. RNA-sequencing was performed for gene expression and signaling pathway analysis. RESULTS: In IBS-M, epithelial resistance and ENaC-dependent sodium absorption were unchanged, while short-circuit current reflecting chloride secretion was reduced. Concomitantly, epithelial permeability for fluorescein and FITC-dextran-4000 increased. TJ protein expression of occludin decreased, whereas claudins were unaltered. Confocal microscopy revealed the de-localization of tricellulin from tricellular TJs. Involved pathways were detected as proinflammatory cytokine pathways, LPS, PGE2, NGF, and vitamin D. CONCLUSIONS: Decreased anion secretion explains constipation in IBS-M, while ion permeability and sodium absorption were unaltered. Reduced occludin expression resulted in the delocalization of tricellulin from the tricellular TJ, leading to increased macromolecular permeability that contributes to antigen influx into the mucosa and perpetuates a low-grade inflammatory process.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/metabolismo , Uniones Estrechas/metabolismo , Ocludina/metabolismo , Proteína 2 con Dominio MARVEL/metabolismo , Estreñimiento/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Permeabilidad , Hábitos
8.
Toxins (Basel) ; 15(1)2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36668874

RESUMEN

Background: Clostridioides difficile binary toxin (CDT) defines the hypervirulence of strains in nosocomial antibiotic-induced colitis with the highest mortality. The objective of our study was to investigate the impact of CDT on the intestinal epithelial barrier and to enlighten the underlying molecular mechanisms. Methods: Functional measurements of epithelial barrier function by macromolecular permeability and electrophysiology were performed in human intestinal HT-29/B6 cell monolayers. Molecular analysis of the spatial distribution of tight junction protein and cytoskeleton was performed by super-resolution STED microscopy. Results: Sublethal concentrations of CDT-induced barrier dysfunction with decreased TER and increased permeability for 332 Da fluorescein and 4 kDa FITC-dextran. The molecular correlate to the functional barrier defect by CDT was found to be a tight junction protein subcellular redistribution with tricellulin, occludin, and claudin-4 off the tight junction domain. This redistribution was shown to be MLCK-dependent. Conclusions: CDT compromised epithelial barrier function in a human intestinal colonic cell model, even in sublethal concentrations, pointing to barrier dysfunction in the intestine and leak flux induction as a diarrheal mechanism. However, this cannot be attributed to the appearance of apoptosis and necrosis, but rather to an opening of the paracellular leak pathway as the result of epithelial tight junction alterations.


Asunto(s)
Clostridioides difficile , Enfermedades Gastrointestinales , Enfermedades Intestinales , Humanos , Células Epiteliales/metabolismo , Clostridioides , Células HT29 , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidad , Células CACO-2
9.
Microorganisms ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36557662

RESUMEN

Arcobacter butzleri is an emergent gram-negative enteropathogenic bacterium widespread in different environments and hosts. During the colonization of the gastrointestinal tract, bacteria face a variety of environmental conditions to successfully establish infection in a new host. One of these challenges is the fluctuation of oxygen concentrations encountered not only throughout the host gastrointestinal tract and defences but also in the food industry. Oxygen fluctuations can lead to modulations in the virulence of the bacterium and possibly increase its pathogenic potential. In this sense, eight human isolates of A. butzleri were studied to evaluate the effects of microaerobic and aerobic atmospheric conditions in stressful host conditions, such as oxidative stress, acid survival, and human serum survival. In addition, the effects on the modulation of virulence traits, such as haemolytic activity, bacterial motility, biofilm formation ability, and adhesion and invasion of the Caco-2 cell line, were also investigated. Overall, aerobic conditions negatively affected the susceptibility to oxygen reactive species and biofilm formation ability but improved the isolates' haemolytic ability and motility while other traits showed an isolate-dependent response. In summary, this work demonstrates for the first time that oxygen levels can modulate the potential pathogenicity of A. butzleri, although the response to stressful conditions was very heterogeneous among different strains.

10.
Ann N Y Acad Sci ; 1516(1): 188-196, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35883254

RESUMEN

Microcystin is a widespread cyanobacterial toxin that affects the intestine to produce diarrheal symptoms after ingestion of freshwater blue-green algae. Our study aimed to characterize the mechanism by which the toxin leads to diarrhea via epithelial barrier dysfunction in a small intestine Caco-2 cell model. Microcystin-treated human Caco-2 epithelial monolayers were functionally and molecularly analyzed for barrier dysfunction. Tight junctions (TJs) and cell damage were analyzed in relation to transepithelial electrical resistance (TER) changes. TER of microcystin-treated Caco-2 cells was reduced by 65% of the initial value after 24 h; concomitantly, permeability for fluorescein increased 2.6-fold. Western blot analysis showed reduced claudin-1 expression, while expression of claudin-3 and -4 remained unchanged. Super-resolution stimulated emission depletion microscopy revealed that TJ integrity was compromised by fraying and splitting of the TJ domain of the epithelial cells. Epithelial apoptosis did not significantly contribute to epithelial barrier dysfunction, while cytoskeletal actomyosin constriction was associated with TJ disintegration and the barrier defect. Our results indicate that microcystin causes intestinal barrier leakiness, which helps to explain the leak flux type of diarrhea as the main pathomechanism after ingestion of cyanobacterial toxin.


Asunto(s)
Actomiosina , Microcistinas , Actomiosina/metabolismo , Células CACO-2 , Claudina-1/metabolismo , Claudina-3/metabolismo , Diarrea , Células Epiteliales/metabolismo , Fluoresceínas , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Microcistinas/metabolismo , Microcistinas/toxicidad , Permeabilidad , Uniones Estrechas/metabolismo
11.
Toxins (Basel) ; 13(8)2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34437391

RESUMEN

Escherichia coli (E. coli) of the B2 phylotype reside in human and animal intestines. The bacteria possess pathogenicity factors such as α-hemolysin (HlyA) that can induce intestinal epithelial leaks. We addressed the questions which host cell processes were dysregulated by E. coli HlyA that can potentiate intestinal diseases. The colon carcinoma cell line Caco-2 was infected by HlyA+ E. coli. Cell polarity regulation was analyzed by live cell imaging for the phosphatidylinositol-4,5-bisphosphate (PIP2) abundance. In Caco-2 monolayers, transepithelial electrical resistance was measured for characterization of barrier function. Cell proliferation and separation were assessed microscopically. Epithelial regulation and cell signaling were analyzed by RNA-Seq and Ingenuity Pathway Analysis (IPA). Our main findings from E. coli HlyA toxinogenicity in the colon carcinoma cell line are that (i) PIP2 at the membrane decrease, (ii) PTEN (phosphatase and tensin homolog) inhibition leads to cell polarity changes, (iii) epithelial leakiness follows these polarity changes by disruption of cell junctions and (iv) epithelial cell detachment increases. HlyA affected pathways, e.g., the PTEN and metastasis signaling, were identified by RNA-Seq bioinformatics calculations in IPA. In conclusion, HlyA affects cell polarity, thereby inducing epithelial barrier dysfunction due to defective tight junctions and focal leak induction as an exemplary mechanism for leaky gut.


Asunto(s)
Proteínas de Escherichia coli/toxicidad , Proteínas Hemolisinas/toxicidad , Fosfohidrolasa PTEN/antagonistas & inhibidores , Células CACO-2 , Polaridad Celular , Proliferación Celular , Neoplasias del Colon/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Infecciones por Escherichia coli/metabolismo , Humanos , Uniones Intercelulares , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445577

RESUMEN

Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.


Asunto(s)
Infecciones por Campylobacter/complicaciones , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Interleucina-10/fisiología , Mucosa Intestinal/efectos de los fármacos , Vitamina D/farmacología , Animales , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Uniones Estrechas/metabolismo , Vitaminas/farmacología
13.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669494

RESUMEN

Campylobacter concisus is a human-pathogenic bacterium of the gastrointestinal tract. This study aimed at the contribution of the mucosal immune system in the context of intestinal epithelial barrier dysfunction induced by C. concisus. As an experimental leaky gut model, we used in vitro co-cultures of colonic epithelial cell monolayers (HT-29/B6-GR/MR) with M1-macrophage-like THP-1 cells on the basal side. Forty-eight hours after C. concisus infection, the decrease in the transepithelial electrical resistance in cell monolayers was more pronounced in co-culture condition and 22 ± 2% (p < 0.001) higher than the monoculture condition without THP-1 cells. Concomitantly, we observed a reduction in the expression of the tight junction proteins occludin and tricellulin. We also detected a profound increase in 4 kDa FITC-dextran permeability in C. concisus-infected cell monolayers only in co-culture conditions. This is explained by loss of tricellulin from tricellular tight junctions (tTJs) after C. concisus infection. As an underlying mechanism, we observed an inflammatory response after C. concisus infection through pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) released from THP-1 cells in the co-culture condition. In conclusion, the activation of subepithelial immune cells exacerbates colonic epithelial barrier dysfunction by C. concisus through tricellulin disruption in tTJs, leading to increased antigen permeability (leaky gut concept).


Asunto(s)
Campylobacter/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Apoptosis , Línea Celular , Supervivencia Celular , Técnicas de Cocultivo , Impedancia Eléctrica , Células Epiteliales/patología , Humanos , Inflamación/patología , Intestinos/microbiología , Intestinos/patología , Macrófagos/metabolismo , Modelos Biológicos , Ocludina/metabolismo , Fracciones Subcelulares/metabolismo , Uniones Estrechas/metabolismo
14.
Curr Top Microbiol Immunol ; 431: 203-231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620653

RESUMEN

Campylobacter enteritis is the most common cause of foodborne bacterial diarrhea in humans. Although various studies have been performed to clarify the pathomechanism in Campylobacter infection, the mechanism itself and bacterial virulence factors are yet not completely understood. The purpose of this chapter is to (i) give an overview on Campylobacter-induced diarrheal mechanisms, (ii) illustrate underlying barrier defects, (iii) explain the role of the mucosal immune response and (iv) weigh preventive and therapeutic approaches. Our present knowledge of pathogenetic and diarrheal mechanisms of Campylobacter jejuni is explained in the first part of this chapter. In the second part, the molecular basis for the Campylobacter-induced barrier dysfunction is compared with that of other species in the Campylobacter genus. The bacteria are capable of overcoming the intestinal epithelial barrier. The invasion into the intestinal mucosa is the initial step of the infection, followed by a second step, the epithelial barrier impairment. The extent of the impairment depends on various factors, including tight junction dysregulation and epithelial apoptosis. The disturbed intestinal epithelium leads to a loss of water and solutes, the leak flux type of diarrhea, and facilitates the uptake of harmful antigens, the leaky gut phenomenon. The barrier dysfunction is accompanied by increased pro-inflammatory cytokine secretion, which is partially responsible for the dysfunction. Moreover, cytokines also mediate ion channel dysregulation (e.g., epithelial sodium channel, ENaC), leading to another diarrheal mechanism, which is sodium malabsorption. Future perspectives of Campylobacter research are the clarification of molecular pathomechanisms and the characterization of therapeutic and preventive compounds to combat and prevent Campylobacter infections.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Diarrea , Humanos , Mucosa Intestinal , Uniones Estrechas
15.
Microorganisms ; 8(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255723

RESUMEN

The polyphenolic compound resveratrol has been shown to exert health-beneficial properties. Given globally emerging Campylobacter infections in humans, we addressed potential anti-pathogenic, immuno-modulatory and intestinal epithelial barrier preserving properties of synthetic resveratrol in the present preclinical intervention study applying a murine acute campylobacteriosis model. Two days following peroral C. jejuni infection, secondary abiotic IL-10-/- mice were either subjected to resveratrol or placebo via the drinking water. Whereas placebo mice suffered from acute enterocolitis at day 6 post-infection, resveratrol treatment did not only lead to improved clinical conditions, but also to less pronounced colonic epithelial apoptosis as compared to placebo application. Furthermore, C. jejuni induced innate and adaptive immune cell responses were dampened in the large intestines upon resveratrol challenge and accompanied by less colonic nitric oxide secretion in the resveratrol versus the placebo cohort. Functional analyses revealed that resveratrol treatment could effectively rescue colonic epithelial barrier function in C. jejuni infected mice. Strikingly, the disease-alleviating effects of resveratrol could additionally be found in extra-intestinal and also systemic compartments at day 6 post-infection. For the first time, our current preclinical intervention study provides evidence that peroral resveratrol treatment exerts potent disease-alleviating effects during acute experimental campylobacteriosis.

16.
Vet Microbiol ; 243: 108632, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32273011

RESUMEN

Zinc treatment is beneficial for infectious diarrhea or colitis. This study aims to characterize the pathomechanisms of the epithelial barrier dysfunction caused by alpha-hemolysin (HlyA)-expressing Escherichia coli in the colon mucosa and the mitigating effects of zinc ions. We performed Ussing chamber experiments on porcine colon epithelium and infected the tissues with HlyA-producing E. coli. Colon mucosa from piglets was obtained from a feeding trial with defined normal or high dose zinc feeding (pre-conditioning). Additional to the zinc feeding, zinc was added to the luminal compartment of the Ussing chamber. Transepithelial electrical resistance (TER) was measured during the infection of the living tissue and subsequently the tissues were immuno-stained for confocal microscopy. Zinc applied to the luminal compartment was effective in preventing from E. coli-induced epithelial barrier dysfunction in Ussing chamber experiments. In contrast, zinc pre-conditioning of colon mucosae when zinc ions were missing subsequently in the luminal compartment was not sufficient to prevent epithelial barrier impairment during E. coli infection. The pathological changes caused by E. coli HlyA were alterations of tight junction proteins claudin-4 and claudin-5, focal leak formation, and cell exfoliation which reflected the paracellular barrier defect measured by a reduced TER. In microscopic analysis of luminal zinc-treated mucosae these changes were absent. In conclusion, continuous presence of unbound zinc ions in the luminal compartment is essential for the protective action of zinc against E. coli HlyA. This suggests the usage of zinc as therapeutic regimen, while prophylactic intervention by high dietary zinc loads may be less useful.


Asunto(s)
Colon/efectos de los fármacos , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Zinc/farmacología , Alimentación Animal , Animales , Colon/citología , Colon/microbiología , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/prevención & control , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Técnicas de Cultivo de Órganos , Porcinos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología
17.
Front Microbiol ; 11: 344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210941

RESUMEN

Campylobacter jejuni is a widespread zoonotic pathogen and the leading bacterial cause of foodborne gastroenteritis in humans. Previous infection studies showed disruption of intercellular contacts, induction of epithelial apoptosis, and immune activation, all three contributing to intestinal barrier dysfunction leading to diarrhea. The present study aims to determine the impact of subepithelial immune cells on intestinal barrier dysfunction during Campylobacter jejuni infection and the underlying pathological mechanisms. Infection was performed in a co-culture of confluent monolayers of the human colon cell line HT-29/B6-GR/MR and THP-1 immune cells. Twenty-two hours after infection, transepithelial electrical resistance (TER) was decreased by 58 ± 6% compared to controls. The infection resulted in an increase in permeability for fluorescein (332 Da; 4.5-fold) and for FITC-dextran (4 kDa; 3.5-fold), respectively. In contrast, incubation of the co-culture with the pan-caspase inhibitor Q-VD-OPh during the infection resulted in a complete recovery of the decrease in TER and a normalization of flux values. Fluorescence microscopy showed apoptotic fragmentation in infected cell monolayers resulting in a 5-fold increase of the apoptotic ratio, accompanied by an increased caspase-3 cleavage and caspase-3/7 activity, which both were not present after Q-VD-OPh treatment. Western blot analysis revealed increased claudin-1 and claudin-2 protein expression. Inhibition of apoptosis induction did not normalize these tight junction changes. TNFα concentration was increased during the infection in the co-culture. In conclusion, Campylobacter jejuni infection and the consequent subepithelial immune activation cause intestinal barrier dysfunction mainly through caspase-3-dependent epithelial apoptosis. Concomitant tight junction changes were caspase-independent. Anti-apoptotic and immune-modulatory substances appear to be promising agents for treatment of campylobacteriosis.

18.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936044

RESUMEN

The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (-55%, n = 15, p < 0.001). This occurred via down-regulation of ß- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction-both of which contribute to Na+ malabsorption and diarrhea.


Asunto(s)
Infecciones por Campylobacter/metabolismo , Campylobacter/fisiología , Claudinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Animales , Infecciones por Campylobacter/microbiología , Colon/metabolismo , Colon/microbiología , Diarrea/metabolismo , Diarrea/microbiología , Células HT29 , Interacciones Huésped-Patógeno , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL
19.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717457

RESUMEN

Klebsiella oxytoca causes antibiotic-associated hemorrhagic colitis and diarrhea. This was attributed largely to its secreted cytotoxins tilivalline and tilimycin, inductors of epithelial apoptosis. To study whether Klebsiella oxytoca exerts further barrier effects, T84 monolayers were challenged with bacterial supernatants derived from tilivalline/tilimycin-producing AHC6 or its isogeneic tilivalline/tilimycin-deficient strain Mut-89. Both preparations decreased transepithelial resistance, enhanced fluorescein and FITC-dextran-4kDa permeabilities, and reduced expression of barrier-forming tight junction proteins claudin-5 and -8. Laser scanning microscopy indicated redistribution of both claudins off the tight junction region in T84 monolayers as well as in colon crypts of mice infected with AHC6 or Mut-89, indicating that these effects are tilivalline/tilimycin-independent. Furthermore, claudin-1 was affected, but only in a tilivalline/tilimycin-dependent manner. In conclusion, Klebsiella oxytoca induced intestinal barrier impairment by two mechanisms: the tilivalline/tilimycin-dependent one, acting by increasing cellular apoptosis and a tilivalline/tilimycin-independent one, acting by weakening the paracellular pathway through the tight junction proteins claudin-5 and -8.


Asunto(s)
Toxinas Bacterianas/farmacología , Benzodiazepinas/farmacología , Benzodiazepinonas/farmacología , Intestinos/patología , Klebsiella oxytoca/efectos de los fármacos , Pirroles/farmacología , Uniones Estrechas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Impedancia Eléctrica , Células Epiteliales/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos
20.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569415

RESUMEN

Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10-/- mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response-represented by TNF-α, IL-1ß, and IL-6 secretion-was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Infecciones por Campylobacter/inmunología , Campylobacter jejuni/inmunología , Curcumina/farmacología , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Animales , Apoptosis , Infecciones por Campylobacter/microbiología , Línea Celular , Técnicas de Cocultivo , Citocinas/biosíntesis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Membrana Mucosa/microbiología , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...