Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(19): 7558-7565, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696396

RESUMEN

With a view to potentiometric sensing with minimal calibration requirements and high long-term stability, colloid-imprinted mesoporous (CIM) carbon was functionalized by the covalent attachment of a cobalt redox buffer and used as a new solid contact for ion-selective electrodes (ISEs). The CIM carbon surface was first modified by electroless grafting of a terpyridine ligand (Tpy-ph) using diazonium chemistry, followed by stepwise binding of Co(II) and an additional Tpy ligand to the grafted ligand, forming a bis(terpyridine) Co(II) complex, CIM-ph-Tpy-Co(II)-Tpy. Half a molar equivalent of ferrocenium tetrakis(3-chlorophenyl)borate was then used to partially oxidize the Co(II) complex. Electrodes prepared with this surface-attached CIM-ph-Tpy-Co(III/II)-Tpy redox buffer as a solid contact were tested as K+ sensors in combination with valinomycin as the ionophore and Dow 3140 silicone or plasticized poly(vinyl chloride) (PVC) as the matrixes for the ion-selective membrane (ISM). This solid contact is characterized by a redox capacitance of 3.26 F/g, ensuring a well-defined interfacial potential that underpins the transduction mechanism. By use of a redox couple as an internal reference element to control the phase boundary potential at the interface of the ISM and the CIM carbon solid contact, solid-contact ion-selective electrodes (SC-ISEs) with a standard deviation of E° as low as 0.3 mV for plasticized PVC ISMs and 3.5 mV for Dow 3140 silicone ISMs were obtained. Over 100 h, these SC-ISEs exhibit an emf drift of 20 µV/h for plasticized PVC ISMs and 62 µV/h for silicone ISMs. The differences in long-term stability and reproducibility between electrodes with ISMs comprising either a plasticized PVC or silicone matrix offer valuable insights into the effect of the polymeric matrix on sensor performance.

2.
Anal Chem ; 96(11): 4702-4708, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451778

RESUMEN

The physical delamination of the sensing membrane from underlying electrode bodies and electron conductors limits sensor lifetimes and long-term monitoring with ion-selective electrodes (ISEs). To address this problem, we developed two plasma-initiated graft polymerization methods that attach ionophore-doped polymethacrylate sensing membranes covalently to high-surface-area carbons that serve as the conducting solid contact as well as to polypropylene, poly(ethylene-co-tetrafluoroethylene), and polyurethane as the inert polymeric electrode body materials. The first strategy consists of depositing the precursor solution for the preparation of the sensing membranes onto the platform substrates with the solid contact carbon, followed by exposure to an argon plasma, which results in surface-grafting of the in situ polymerized sensing membrane. Using the second strategy, the polymeric platform substrate is pretreated with argon plasma and subsequently exposed to ambient oxygen, forming hydroperoxide groups on the surface. Those functionalities are then used for the initiation of photoinitiated graft polymerization of the sensing membrane. Attenuated total reflection-Fourier transform infrared spectroscopy, water contact angle measurements, and delamination tests confirm the covalent attachment of the in situ polymerized sensing membranes onto the polymeric substrates. Using membrane precursor solutions comprising, in addition to decyl methacrylate and a cross-linker, also 2-(diisopropylamino)ethyl methacrylate as a covalently attachable H+ ionophore and tetrakis(pentafluorophenyl)borate as ionic sites, both plasma-based fabrication methods produced electrodes that responded to pH in a Nernstian fashion, with the high selectivity expected for ionophore-based ISEs.

3.
Analyst ; 149(4): 1132-1140, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205703

RESUMEN

The pH working range of solid-contact ion-selective electrodes (ISEs) with plasticizer-free poly(decyl methacrylate) sensing membranes is shown to be expanded by covalent attachment of H+ ionophores to the polymeric membrane matrix. In situ photopolymerization not only incorporates the ionophores into the polymer backbone, but at the same time also attaches the sensing membranes covalently to the underlying inert polymer and nanographite solid contact, minimizing sensor drift and preventing failure by membrane delamination. A new pyridine-based H+ ionophore, 3-(pyridine-3-yl)propyl methacrylate, has lower basicity than trialkylamine ionophores and expands the upper detection limit. This reduces in particular the interference from hydrogen phthalate, which is a common component of commercial pH buffers. Moreover, the lower detection limit is improved by replacing the CH2CH2 spacer of previously reported dialkylaminoethyl methacrylates with a (CH2)10 spacer, which increases its basicity. Notably, for the more basic and highly cation-selective ionophore 10-(diisopropylamino)decyl methacrylate, the extent of counterion interference from hydrogen phthalate shifted the upper detection limit to lower pH by nearly one pH unit when the crosslinker concentration was decreased.

4.
Anal Chem ; 96(5): 2236-2243, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277487

RESUMEN

AgCl-coated silver fabricated with the thermal-electrolytic method can be used to prepare more reproducible reference electrodes than Ag/AgCl prepared with alternative methods such as electrolytic and chemical AgCl deposition or thermal fabrication. However, thermal-electrolytic fabrication requires a scaffold material upon which to build the layers upon. Platinum and rhodium have been used for this purpose as they are mechanically strong and chemically inert, but their cost is prohibitive for wider application. Herein, we report the stability of Ag/AgCl reference electrodes built atop a titanium scaffold using the thermal-electrolytic method and the use of these Ti/Ag/AgCl constructs in capillary-based reference electrodes. Electrochemical characterization shows that the probable presence of small amounts of oxygen at the Ti/Ag interface does not affect the reference electrode performance; in particular, over a wide pH range, the half-cell potential is pH independent. The electrical resistance of the Ti/Ag/AgCl/KCl system is dominated by the charge transfer resistance at the interface of the AgCl to KCl solution but is kept very small by the large AgCl surface area and a high solution concentration of chloride. The resulting high exchange current minimizes the effect of system impurities on the reference half-cell potential. Capillary-based reference electrodes comprising Ti/Ag/AgCl show exceptionally low potential drifts (as low as 0.03 ± 2.01 µV/h) and standard deviations of the potential at or below ±0.5 mV over a 60 h period. These capillary-based reference electrodes are suitable for very small sample volumes while still providing a free-flowing liquid junction that prevents reference electrode contamination.

5.
Langmuir ; 40(3): 1785-1792, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198594

RESUMEN

The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.

6.
Adv Mater ; 36(8): e2309778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105339

RESUMEN

The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.

7.
Anal Chem ; 95(33): 12419-12426, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552138

RESUMEN

Solid-contact ion-selective electrodes (SC-ISEs) in direct long-term contact with physiological samples must be biocompatible and resistant to biofouling, but most wearable SC-ISEs proposed to date contain plasticized poly(vinyl chloride) (PVC) membranes, which have poor biocompatibility. Silicones are a promising alternative to plasticized PVC because of their excellent biocompatibility, but little work has been done to study the relationship between silicone composition and ISE performance. To address this, we prepared and tested K+ SC-ISEs with colloid-imprinted mesoporous (CIM) carbon as the solid contact and three different condensation-cured silicones: a custom silicone prepared in-house (Silicone 1), a commercial silicone (Dow 3140, Silicone 2), and a commercial fluorosilicone (Dow 730, Fluorosilicone 1). SC-ISEs prepared with each of these polymers and the ionophore valinomycin and added ionic sites exhibited Nernstian responses, excellent selectivities, and signal drifts as low as 3 µV/h in 1 mM KCl solution. All ISEs maintained Nernstian response slopes and had only very slightly worsened selectivities after 41 h exposure to porcine plasma (log KK,Na values of -4.56, -4.58, and -4.49, to -4.04, -4.00, and -3.90 for Silicone 1, Silicone 2, and Fluorosilicone 1, respectively), confirming that these sensors retain the high selectivity that makes them suitable for use in physiological samples. When immersed in porcine plasma, the SC-ISEs exhibited emf drifts that were still fairly low but notably larger than when measurements were performed in pure water. Interestingly, despite the very similar structures of these matrix polymers, SC-ISEs prepared with Silicone 2 showed lower drift in porcine blood plasma (-55 µV/h, over 41 h) compared to Silicone 1 (-495 µV/h) or Fluorosilicone 1 (-297 µV/h).


Asunto(s)
Plastificantes , Siliconas , Animales , Porcinos , Electrodos de Iones Selectos , Agua , Polímeros , Iones/química
8.
Angew Chem Int Ed Engl ; 62(28): e202304674, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37166178

RESUMEN

The use of solid-contact ion-selective electrodes (ISEs) is of interest to many clinical, environmental, and industrial applications. However, upon extended exposure to samples and under thermal and mechanical stress, adhesion between these membranes and underlying substrates often weakens gradually. Eventually, this results in the formation of a water layer at the interface to the underlying electron conductor and in delamination of the membrane from the electrode body, both major limitations to long-term monitoring. To prevent these problems without increasing the complexity of design with a mechanical attachment, we use photo-induced graft polymerization to simultaneously attach ionophore-doped crosslinked poly(decyl methacrylate) sensing membranes covalently both to a high surface area carbon as ion-to-electron transducer and to inert polymeric electrode body materials (i.e., polypropylene and poly(ethylene-co-tetrafluoroethylene)). The sensors provide high reproducibility (standard deviation of E0 of 0.2 mV), long-term stability (potential drift 7 µV h-1 over 260 h), and resistance to sterilization in an autoclave (121 °C, 2.0 atm for 30 min). For this work, a covalently attached H+ selective ionophore was used to prepare pH sensors with advantages over conventional pH glass electrodes, but similar use of other ionophores makes this approach suitable to the fabrication of ISEs for a variety of analytes.

9.
ACS Sens ; 8(4): 1774-1781, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37043696

RESUMEN

Nanopore-driven sequestration of ionic liquids from a silicone membrane is presented, a phenomenon that has not been reported previously. Reference electrodes with ionic liquid doped polydimethylsiloxane (PDMS) reference membranes and colloid-imprinted mesoporous carbon (CIM) as solid contact are not functional unless special attention is paid to the porosity of the solid contact. In the fabrication of such reference electrodes, a solution of a hydroxyl-terminated silicone oligomer, ionic liquid, cross-linking reagent, and polymerization catalyst is deposited on top of the carbon layer, rapidly filling the pores of the CIM carbon. The catalyzed polymerization curing of the silicone quickly results in cross-linking of the hydroxyl-terminated polydimethylsiloxane oligomers, forming structures that are too large to penetrate the CIM carbon pores. Therefore, as solvent evaporation from the top of freshly prepared membranes drives the diffusional transport of solvent toward that membrane surface, the solvent molecules that leave the CIM carbon pores can only be replaced by the ionic liquid. This depletes the ionic liquid in the reference membrane that overlies the CIM carbon solid contact and increases the membrane resistance by up to 3 orders of magnitude, rendering the devices dysfunctional. This problem can be avoided by presaturating the CIM carbon with ionic liquid prior to the deposition of the solution that contains the silicone oligomers and ionic liquid. Alternatively, a high amount of ionic liquid can be added into the membrane solution to account for the size-selective sequestration of ionic liquid into the carbon pores. Either way, a wide variety of ionic liquids can be used to prepare PDMS-based reference electrodes with CIM carbon as a solid contact. A similar depletion of the K+ ionophore BME-44 from ion-selective silicone membranes was observed too, highlighting that the depletion of active ingredients from polymeric ion-selective and reference membranes due to interactions with high surface area solid contacts may be a more common phenomenon that so far has been overlooked.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Siliconas , Solventes , Carbono/química , Electrodos , Dimetilpolisiloxanos
10.
ACS Nano ; 16(11): 19567-19583, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36367841

RESUMEN

Rapid detection of volatile organic compounds (VOCs) is growing in importance in many sectors. Noninvasive medical diagnoses may be based upon particular combinations of VOCs in human breath; detecting VOCs emitted from environmental hazards such as fungal growth could prevent illness; and waste could be reduced through monitoring of gases produced during food storage. Electronic noses have been applied to such problems, however, a common limitation is in improving selectivity. Graphene is an adaptable material that can be functionalized with many chemical receptors. Here, we use this versatility to demonstrate selective and rapid detection of multiple VOCs at varying concentrations with graphene-based variable capacitor (varactor) arrays. Each array contains 108 sensors functionalized with 36 chemical receptors for cross-selectivity. Multiplexer data acquisition from 108 sensors is accomplished in tens of seconds. While this rapid measurement reduces the signal magnitude, classification using supervised machine learning (Bootstrap Aggregated Random Forest) shows excellent results of 98% accuracy between 5 analytes (ethanol, hexanal, methyl ethyl ketone, toluene, and octane) at 4 concentrations each. With the addition of 1-octene, an analyte highly similar in structure to octane, an accuracy of 89% is achieved. These results demonstrate the important role of the choice of analysis method, particularly in the presence of noisy data. This is an important step toward fully utilizing graphene-based sensor arrays for rapid gas sensing applications from environmental monitoring to disease detection in human breath.


Asunto(s)
Grafito , Compuestos Orgánicos Volátiles , Humanos , Nariz Electrónica , Compuestos Orgánicos Volátiles/análisis , Octanos , Gases , Aprendizaje Automático
11.
Anal Chem ; 94(43): 14898-14905, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260770

RESUMEN

While paper is an excellent material for use in many other portable sensors, potentiometric paper-based sensors have been reported to perform worse than conventional rod-shaped electrodes, in particular in view of limits of detection (LODs). Reported here is an in-depth study of the lower LOD for Cl- measurements with paper-based devices comprising AgCl/Ag transducers. Contamination by Cl- from two commonly used device materials─a AgCl/Ag ink and so-called ashless filter paper─was found to increase the concentration of Cl- in paper-contained samples far above what is expected for the spontaneous dissolution of the transducer's AgCl, thereby worsening lower LODs. In addition, for the case of Ag+, the commonly hypothesized adsorption of metal cations onto filter paper was found not to significantly affect the performance of AgCl/Ag transducers. We note that in the context of chemical analysis, metal impurities of paper are often mentioned in the literature, but Cl- contamination of paper has been overlooked.


Asunto(s)
Cloruros , Plata , Cloruros/análisis , Límite de Detección , Potenciometría , Electrodos
12.
Anal Sci ; 38(1): 71-83, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35287207

RESUMEN

A vital part of almost every experimental electrochemical set up is the reference electrode. As the development of working and indicator electrodes progresses to sensors with greater long-term stability and efficiency, it is important for reference electrodes to keep up with that progress. In this review, the deficiencies of commonly used reference electrodes are discussed, and recent work in the development of new reference electrode designs for more stable and reliable electrochemical experiments is highlighted. This encompasses work with salt-bridge reference electrodes comprising nanoporous and capillary junctions, solid-contact reference electrodes, and ionic liquid-based reference electrodes.


Asunto(s)
Líquidos Iónicos , Nanoporos , Electroquímica , Electrodos
13.
Anal Chem ; 94(2): 1143-1150, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932309

RESUMEN

Solid-contact ion-selective electrodes (ISEs) with an unintentional water layer between the sensing membrane and underlying electron conductor are well known to suffer from potential drift caused by the instability of the phase boundary potential between the sensing membrane and the water layer with its uncontrolled ionic composition. The reproducibility and long-term emf stability of ISEs with a miniaturized inner filling solution comprising a hydrogel and a hydrophilic electrolyte have not been studied as thoroughly. Here, such devices are discussed with a view to electrode-to-electrode reproducibility, using both hydrophilic ion-exchange and plasticized PVC membranes, along with a hydrophilic redox buffer composed of ferrocyanide and ferricyanide to control the potential between the hydrogel and the underlying electron conductor. With plasticized PVC sensing membranes, these electrodes showed an E0 reproducibility of ±1.1 mV or better, while with hydrophilic ion-exchange membranes, this variability was slightly larger. Long-term drifts were also assessed with both membranes, and the effect of osmotic pressure on drift was shown to be insignificant for the PVC membranes and very small at most for the hydrophilic membranes.


Asunto(s)
Hidrogeles , Electrodos de Iones Selectos , Electrodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Transductores
14.
Anal Chem ; 93(50): 16899-16905, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34878238

RESUMEN

With a view to improving the sensor lifetime, solid-contact ion-selective electrodes (ISEs) were prepared with a plasticizer-free and cross-linked poly(decyl methacrylate) matrix, to which only the ionic sites, only the ionophore, or both the ionic sites and ionophore were covalently attached. In earlier work with covalently attached ionophores or ionic sites, it was difficult to discount the presence of ionophores or ionic site impurities that were not covalently attached to the polymer backbone because the reagents used to introduce the ionophore or ionic sites had high hydrophobicities. In this work, we deliberately chose readily available hydrophilic reagents for the introduction of covalently attached H+ ionophores with tertiary amino groups and covalently attached sulfonate groups as ionic sites. This simplified the synthesis and made it possible to thoroughly remove ionophores and ionic sites not covalently attached to the polymer backbone. Our results confirm the expectation that hydrophobic ISE membranes with both covalently attached ionophores and ionic sites have impractically long response times. In contrast, ISEs with either covalently attached H+ ionophores or covalently attached ionic sites responded to pH with quick Nernstian responses and high selectivity. Both conventional plasticized poly(vinyl chloride) (PVC)-based ISEs and the new poly(decyl methacrylate) membranes were exposed to 90 °C heat for 2 h, 10% ethanol for 1 day, or undiluted blood serum for 5 days. In all three cases, the poly(decyl methacrylate) ISEs exhibited properties superior to conventional PVC-based ISEs, confirming the advantages of the covalent attachment.


Asunto(s)
Electrodos de Iones Selectos , Metacrilatos , Concentración de Iones de Hidrógeno , Ionóforos , Iones
15.
ACS Sens ; 6(6): 2211-2217, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34087074

RESUMEN

As solid-contact potentiometric sensors based on novel materials have reached exceptional stabilities with drifts in the low µV/h range and long-term and calibration-free potentiometric measurements gain more and more attention, reference electrode designs that used to be satisfactory for most users do not satisfy the needs of new challenging applications. It is important that the interface between a reference electrode and the sample, often provided by a salt bridge, remains constant in ion composition over time. Excessive restriction of the flow of the bridge electrolyte, e.g., by using nanoporous frits or gelled reference electrolyte solutions, can result in contamination of the salt bridge with sample components and depletion of the reference electrolyte by diffusion into samples. This can be avoided by using salt bridges that flow freely into the sample. However, commonly used reference electrodes with free-flowing junctions often suffer either from experimental difficulties in assuring a minimum flow rate or from excessive flow rates that require frequent replenishing of the bridge electrolyte. To this end, we developed a reference electrode that contains a concentrated electrolyte contacting samples through a 10.2 µm capillary. By applying a minimal pressure of 10.0 kPa, a flow rate of 100 nL/h is achieved. This maintains a constant liquid junction potential at the interface with the sample and avoids contamination of the reference electrode, as evidenced by a potential stability of 6 ± 3 µV/h over 21 days. With such a minimal flow rate, there is no need to refill the reference electrode electrolyte for years.


Asunto(s)
Electrólitos , Electrodos , Potenciometría
17.
ACS Omega ; 5(23): 13621-13629, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566827

RESUMEN

Because of their low polarity and polarizability, fluorous sensing membranes are both hydrophobic and lipophobic and exhibit very high ion selectivities. Here, we report on a new fluorous-membrane ion-selective electrode (ISE) with a wide sensing range centered around physiologically relevant pH values. The fluorophilic tris[perfluoro(octyl)butyl]amine (N[(CH2)4Rf8]3) was synthesized and tested as a new H+ ionophore using a redesigned electrode body that provides excellent mechanical sealing and much improved measurement reliability. In a challenging 1 M KCl background, these fluorous-phase ISEs exhibit a sensing range from pH 2.2 to 11.2, which is one of the widest working ranges reported to date for ionophore-based H+ ISEs. High selectivities against common interfering ions such as K+, Na+, and Ca2+ were determined (selectivity coefficients: logK H, K pot = - 11.6; logK H, Na pot = - 12.4; logK H, Ca pot < - 10.2). The use of the N[(CH2)4Rf8]3 ionophore with its -(CH2)4- spacers separating the amino group from the strongly electron-withdrawing perfluorooctyl groups improved the potentiometric selectivity as compared to the less basic tris[perfluoro(octyl)propyl]amine ionophore. The use of N[(CH2)4Rf8]3 also made the ISE less prone to counter anion failure (i.e., Donnan failure) at low pH than the use of tris[perfluoro(octyl)pentyl]amine with its longer -(CH2)5- spacers, which more effectively shield the amino center from the perfluorooctyl groups. In addition, we exposed both conventional plasticized PVC-phase pH ISEs and fluorous-phase pH ISEs to 10% serum for 5 days. Results show that the PVC-phase ISEs lost selectivity while their fluorous-phase counterparts did not.

18.
Anal Chem ; 92(11): 7621-7629, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32351106

RESUMEN

Numerous ion-selective and reference electrodes have been developed over the years. Following the need for point-of-care and wearable sensors, designs have transitioned recently from bulky devices with an aqueous inner filling solution to planarizable solid-contact electrodes. However, unless the polymeric sensing and reference membranes are held in place mechanically, delamination of these membranes from the underlying solid to which they adhere physically limits sensor lifetime. Even minor external mechanical stress or thermal expansion can result in membrane delamination and, thereby, device failure. To address this problem, we designed a sensing platform based on poly(ethylene terephthalate) substrates to which polyacrylate-based sensing and polymethacrylate-based reference membranes are attached covalently. Ion-selective membranes with covalently attached or freely dissolved ionophore- and ionic-liquid-doped reference membranes can be directly photopolymerized onto surface-functionalized poly(ethylene terephthalate), resulting in the formation of covalent bonds between the underlying substrate and the attached membranes. H+- and K+-selective electrodes thus prepared exhibit highly selective responses with the theoretically expected (Nernstian) response slope, and reference electrodes provide sample-independent reference potentials over a wide range of electrolyte concentrations. Even repeated mechanical stress does not result in the delamination of the sensing and reference membranes, leading to electrodes with much improved long-term performance. As demonstrated for poly(ethylene-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), this approach may be expanded to a wide range of other polyester, polyamide, and polyurethane platform materials. Covalent attachment of sensing and reference membranes to an inert plastic platform material is a very promising approach to a problem that has plagued the field of ion-selective electrodes and field effect transistors for over 30 years.

19.
ACS Sens ; 5(6): 1717-1725, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32366104

RESUMEN

Many reference electrodes with an ionic liquid-doped reference membrane contain a plasticizer that can gradually leach out into the sample. However, because many common plasticizers are known to be endocrine disruptors and may induce inflammatory reactions, they are preferably avoided for wearable or implantable sensors. Therefore, this work tested polymeric reference electrode membranes prepared by solvent casting from seven commercially available biocompatible silicones that are widely used in implantable devices. Only reference electrodes with membranes consisting of poly(3,3,3-trifluoropropylmethylsiloxane) (Fluorosilicone 1) and one of several 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids provided a stable and sample-independent potential in electrolyte solutions spanning the range of electrolyte concentrations in human blood, with more hydrophobic ionic liquids performing better. Over 8 days at 37 °C in artificial blood electrolyte solutions, the reference membranes doped with 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide exhibited a potential drift as low as 20 µV/h. In 10% animal serum, a 112 µV/h drift was observed over 5.8 days. The other six silicone materials doped with an ionic liquid either failed to form self-standing membranes or did not provide a sample-independent potential in the ionic concentration range tested. In case of the functional reference electrodes, differential scanning calorimetry confirmed good miscibility between the ionic liquid and the polymer matrix, whereas the poor miscibility of four polymer matrixes and the ionic liquids-as confirmed by differential scanning calorimetry-correlated with an undesirable sample dependence of the reference potential.


Asunto(s)
Líquidos Iónicos , Electrodos , Electrólitos , Humanos , Polímeros , Siliconas
20.
Anal Sci ; 36(2): 187-191, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31495816

RESUMEN

Porous glass frits are frequently used to contain the salt bridges through which reference electrodes interface samples. Prior work with widely used glass frits with 4 - 10 nm diameter pores showed that, when samples have a low electrolyte strength, electrostatic screening of sample ions by charged sites on the glass surface occurs. This creates an ion-specific phase-boundary potential at the interface between the sample and frit, and it biases the potential of the reference half-cell. Use of frits with much larger pores eliminates this problem but results in the need for frequent replenishing of the bridge electrolyte. A methodical study to determine the optimum pore size has been missing. We show here that charge screening of sample ions occurs when the pore size of nanoporous glass frits is on the order of 1 - 50 nm and samples have a low electrolyte strength. An increase in pores size to 100 nm eliminates charge screening in samples with ionic strengths in the 1.0 M to 3.3 × 10-4 M range. However, the rates of electrolyte solution flow through frits with 1, 5, 20, 50, and 100 nm pores are still low, which makes diffusion the dominant mode of ion transport into and out of these frits. Consequently, the flow of bridge electrolyte into samples is not fast enough to prevent diffusion of ions and electrically neutral components from the sample diffusing into the salt bridge, which can result in cross contamination among samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...