Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311635, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703033

RESUMEN

Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.

2.
Ultramicroscopy ; 219: 113118, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33126186

RESUMEN

Differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM) allows for measuring electric and magnetic fields in solids on scales ranging from picometres to micrometres. The DPC technique mainly uses the direct beam, which is deflected by the electric and magnetic fields of the specimen and measured with a beam position sensitive detector. The beam deflection and thus the DPC signal is strongly influenced by specimen thickness, specimen tilt and lens aberrations. Understanding these influences is critical for a solid interpretation and quantification of contrasts in DPC images. To this end, the present study employs DPC-STEM image simulations of SrTiO3 [001] at atomic resolution to analyse the influence of lens aberrations, specimen tilt and thickness and also to give a guideline for the detection of parameters affecting the contrast by performing an analysis of associated scattergrams. Simulations are obtained using the multislice algorithm implemented in the Dr. Probe software with conditions corresponding to a JEOL ARM200F microscope equipped with an octa-segmented annular detector, but results should be similar for other microscopes. Simulations show that due to a non-rigid shift of the detected intensity distribution correct values of projected potentials of specimens thicker than one unit-cell cannot be determined. Regarding the impact of residual lens aberrations, it is found that the shape of the lens aberration phase function determines the symmetry and features in the DPC image. Specimen tilt leads to an elongation of features perpendicular to the tilt axis. The results are confirmed by comparing simulated with experimental DPC images of Si [110] yielding good agreement. Overall, a high sensitivity of DPC-STEM imaging to lens aberrations, specimen tilt and diffraction effects is evidenced.

3.
Nanomaterials (Basel) ; 10(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941037

RESUMEN

Block copolymer (BCP) self-assembly is a promising tool for next generation lithography as microphase separated polymer domains in thin films can act as templates for surface nanopatterning with sub-20 nm features. The replicated patterns can, however, only be as precise as their templates. Thus, the investigation of the morphology of polymer domains is of great importance. Commonly used analytical techniques (neutron scattering, scanning force microscopy) either lack spatial information or nanoscale resolution. Using advanced analytical (scanning) transmission electron microscopy ((S)TEM), we provide real space information on polymer domain morphology and interfaces between polystyrene (PS) and polymethylmethacrylate (PMMA) in cylinder- and lamellae-forming BCPs at highest resolution. This allows us to correlate the internal structure of polymer domains with line edge roughnesses, interface widths and domain sizes. STEM is employed for high-resolution imaging, electron energy loss spectroscopy and energy filtered TEM (EFTEM) spectroscopic imaging for material identification and EFTEM thickness mapping for visualisation of material densities at defects. The volume fraction of non-phase separated polymer species can be analysed by EFTEM. These methods give new insights into the morphology of polymer domains the exact knowledge of which will allow to improve pattern quality for nanolithography.

4.
Nanotechnology ; 31(9): 095701, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31703211

RESUMEN

Zinc oxide (ZnO) hollow spheres with defined morphology and micro-/nanostructure are prepared by a hydrothermal synthesis approach. The materials possess fine-leaved structures at their particle surface (nanowall hollow micro spheres). Morphology control is achieved by citric acid used as an additive in variable relative quantities during the synthesis. The structure formation is studied by various time-dependent ex situ methods, such as scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The fine-leaved surface structure is characterized by high-resolution transmission electron microscopy techniques (HRTEM, STEM), using a high-angle annular dark field detector, as well as by differential phase contrast analysis. In-depth structural characterization of the nanowalls by drop-by-drop ex situ FE-SEM analysis provides insight into possible structure formation mechanisms. Further investigation addresses the thermal stability of the particle morphology and the enhancement of the surface-to-volume ratio by heat treatment (examined by N2 physisorption).

5.
Langmuir ; 34(49): 14757-14765, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29754490

RESUMEN

DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.


Asunto(s)
ADN/química , Nanoestructuras/química , Adsorción , Oro/química , Nanoporos , Conformación de Ácido Nucleico , Dióxido de Silicio/química
6.
Nanoscale ; 10(21): 10005-10017, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29774901

RESUMEN

Bottom-up patterning techniques allow for the creation of surfaces with ordered arrays of nanoscale features on large areas. Two bottom-up techniques suitable for the formation of regular nanopatterns on different length scales are nanosphere lithography (NSL) and block copolymer (BCP) lithography. In this paper it is shown that NSL and BCP lithography can be combined to easily design hierarchically nanopatterned surfaces of different materials. Nanosphere lithography is used for the pre-patterning of surfaces with antidots, i.e. hexagonally arranged cylindrical holes in thin films of Au, Pt and TiO2 on SiO2, providing a periodic chemical and topographical contrast on the surface suitable for templating in subsequent BCP lithography. PS-b-PMMA BCP is used in the second self-assembly step to form hexagonally arranged nanopores with sub-20 nm diameter within the antidots upon microphase separation. To achieve this the microphase separation of BCP on planar surfaces is studied, too, and it is demonstrated for the first time that vertical BCP nanopores can be formed on TiO2, Au and Pt films without using any neutralization layers. To explain this the influence of surface energy, polarity and roughness on the microphase separation is investigated and discussed along with the wetting state of BCP on NSL-pre-patterned surfaces. The presented novel route for the creation of advanced hierarchical nanopatterns is easily applicable on large-area surfaces of different materials. This flexibility makes it suitable for a broad range of applications, from the morphological design of biocompatible surfaces for life science to complex pre-patterns for nanoparticle placement in semiconductor technology.

7.
Opt Express ; 25(19): 22608-22619, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041568

RESUMEN

Switchable two dimensional liquid crystal diffraction gratings are promising candidates in beam steering devices, multiplexers and holographic displays. For these areas of applications a high degree of integration in optical systems is much sought-after. In the context of diffraction gratings this means that the angle of diffraction should be rather high, which typically poses a problem as the fabrication of small grating periods is challenging. In this paper, we propose the use of nanosphere lithography (NSL) for the fabrication of two-dimensionally structured electrodes with a periodicity of a few micrometers. NSL is based on the self-assembly of micro- or nanometer sized spheres into monolayers. It allows for easy substrate structuring on wafer scale. The manufactured electrode is combined with a liquid crystalline polymer-stabilized blue phase, which facilitates sub-millisecond electrical switching of the diffraction efficiency at a diffraction angle of 21.4°.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...