Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 121(44): 24657-24668, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29152034

RESUMEN

The adsorption of molecular acceptors is a viable method for tuning the work function of metal electrodes. This, in turn, enables adjusting charge injection barriers between the electrode and organic semiconductors. Here, we demonstrate the potential of pyrene-tetraone (PyT) and its derivatives dibromopyrene-tetraone (Br-PyT) and dinitropyrene-tetraone (NO2-PyT) for modifying the electronic properties of Au(111) and Ag(111) surfaces. The systems are investigated by complementary theoretical and experimental approaches, including photoelectron spectroscopy, the X-ray standing wave technique, and density functional theory simulations. For some of the investigated interfaces the trends expected for Fermi-level pinning are observed, i.e., an increase of the metal work function along with increasing molecular electron affinity and the same work function for Au and Ag with monolayer acceptor coverage. Substantial deviations are, however, found for Br-PyT/Ag(111) and NO2-PyT/Ag(111), where in the latter case an adsorption-induced work function increase of as much as 1.6 eV is observed. This behavior is explained as arising from a face-on to edge-on reorientation of molecules in the monolayer. Our calculations show that for an edge-on orientation much larger work-function changes can be expected despite the prevalence of Fermi-level pinning. This is primarily ascribed to a change of the electron affinity of the adsorbate layer that results from a change of the molecular orientation. This work provides a comprehensive understanding of how changing the molecular electron affinity as well as the adsorbate structure impacts the electronic properties of electrodes.

2.
Nat Chem ; 5(3): 187-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23422560

RESUMEN

Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.


Asunto(s)
Metales/química , Naftacenos/química , Quinonas/química , Modelos Moleculares , Semiconductores , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...