Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 28(5): 742-755, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35210358

RESUMEN

Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational mechanisms. We have recently shown that the small, noncoding vault RNA1-1 negatively riboregulates p62 oligomerization in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerization are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and we identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.


Asunto(s)
Arginina , Lisina , Autofagia/genética , ARN Bacteriano , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
2.
Cancer Discov ; 11(3): 638-659, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33060108

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/metabolismo , Metilación de ADN , Interferones/metabolismo , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Islas de CpG , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma , Microambiente Tumoral/genética
3.
Open Biol ; 10(2): 190307, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32070232

RESUMEN

RNA-binding proteins typically change the fate of RNA, such as stability, translation or processing. Conversely, we recently uncovered that the small non-coding vault RNA 1-1 (vtRNA1-1) directly binds to the autophagic receptor p62/SQSTM1 and changes the protein's function. We refer to this process as 'riboregulation'. Here, we discuss this newly uncovered vault RNA function against the background of three decades of vault RNA research. We highlight the vtRNA1-1-p62 interaction as an example of riboregulation of a key cellular process.


Asunto(s)
ARN no Traducido/genética , Proteína Sequestosoma-1/metabolismo , Animales , Autofagia , Regulación de la Expresión Génica , Humanos , Estabilidad del ARN , ARN no Traducido/química
4.
Autophagy ; 15(8): 1463-1464, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31006338

RESUMEN

The selective autophagic receptor SQSTM1/p62 ushers cargo to phagophores, the precursors of autophagosomes, and serves as a platform for autophagy initiation. We discovered that SQSTM1 is an RNA-binding protein that interacts with vault RNAs. Vault RNAs are small non-coding RNAs found in many eukaryotes and transcribed by POLR3 (RNA polymerase III). The levels of VTRNA1-1 (vault RNA 1-1) regulate SQSTM1-mediated autophagy and ubiquitin aggregate clearance. Vault RNA interferes with oligomerization of SQSTM1, which is in turn critical for its autophagic function. Our study uncovered a novel mode of regulation of a protein's activity by RNA, termed riboregulation.


Asunto(s)
Autofagia , ARN/metabolismo , Humanos , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/metabolismo
5.
Cell ; 176(5): 1054-1067.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30773316

RESUMEN

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.


Asunto(s)
Autofagia/genética , Partículas Ribonucleoproteicas en Bóveda/genética , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Células HeLa , Humanos , Ratones , Células RAW 264.7 , ARN/metabolismo , ARN no Traducido/metabolismo , ARN no Traducido/fisiología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
6.
Genome Biol ; 19(1): 32, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540241

RESUMEN

BACKGROUND: The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS: We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS: This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , ARN Largo no Codificante/genética , Animales , Secuencia de Bases , Cromatina/química , Secuencia Conservada , Genoma , Humanos , Ratones , Neoplasias/genética , Motivos de Nucleótidos , Regiones Promotoras Genéticas , ARN Largo no Codificante/química , Factores de Transcripción/genética
7.
Mol Biosyst ; 11(12): 3231-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26434634

RESUMEN

The activity of proteins is dictated by their three-dimensional structure, the native state, and is influenced by their ability to remain in or return to the folded native state under physiological conditions. Backbone circularization is thought to increase protein stability by decreasing the conformational entropy in the unfolded state. A positive effect of circularization on stability has been shown for several proteins. Here, we report the development of a cloning standard that facilitates implementing the SICLOPPS technology to circularize proteins of interest using split inteins. To exemplify the usage of the cloning standard we constructed two circularization vectors based on the Npu DnaE and gp41-1 split inteins, respectively. We use these vectors to overexpress in Escherichia coli circular forms of the Bacillus subtilis enzyme family 11 xylanase that differ in the identity and number of additional amino acids used for circularization (exteins). We found that the variant circularized with only one additional serine has increased thermostability of 7 °C compared to native xylanase. The variant circularized with six additional amino acids has only a mild increase in thermostability compared to the corresponding exteins-bearing linear xylanase, but is less stable than native xylanase. However, this circular xylanase retains more than 50% of its activity after heat shock at elevated temperatures, while native xylanase and the corresponding exteins-bearing linear xylanase are largely inactivated. We correlate this residual activity to the fewer protein aggregates found in the test tubes of circular xylanase after heat shock, suggesting that circularization protects the protein from aggregation under these conditions. Taken together, these data indicate that backbone circularization has a positive effect on xylanase and can lead to increased thermostability, provided the appropriate exteins are selected. We believe that our cloning standard and circularization vectors will facilitate testing the effects of circularization on other proteins.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Agregado de Proteínas , Xilosidasas/química , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Vectores Genéticos/genética , Inteínas , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Empalme de Proteína , Termodinámica , Xilosidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...