Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38534827

RESUMEN

Gripping, holding, and moving objects are among the main functional purposes of robots. Ever since automation first took hold in society, optimizing these functions has been of high priority, and a multitude of approaches has been taken to enable cheaper, more reliable, and more versatile gripping. Attempts are ongoing to reduce grippers' weight, energy consumption, and production and maintenance costs while simultaneously improving their reliability, the range of eligible objects, working loads, and environmental independence. While the upper bounds of precision and flexibility have been pushed to an impressive level, the corresponding solutions are often dependent on support systems (e.g., sophisticated sensors and complex actuation machinery), advanced control paradigms (e.g., artificial intelligence and machine learning), and typically require more maintenance owed to their complexity, also increasing their cost. These factors make them unsuited for more modest applications, where moderate to semi-high performance is desired, but simplicity is required. In this paper, we attempt to highlight the potential of the tarsal chain principle on the example of a prototype biomimetic gripping device called the TriTrap gripper, inspired by the eponymous tarsal chain of insects. Insects possess a rigid exoskeleton that receives mobility due to several joints and internally attaching muscles. The tarsus (foot) itself does not contain any major intrinsic muscles but is moved by an extrinsically pulled tendon. Just like its biological counterpart, the TriTrap gripping device utilizes strongly underactuated digits that perform their function using morphological encoding and passive conformation, resulting in a gripper that is versatile, robust, and low cost. Its gripping performance was tested on a variety of everyday objects, each of which represented different size, weight, and shape categories. The TriTrap gripper was able to securely hold most of the tested objects in place while they were lifted, rotated, and transported without further optimization. These results show that the insect tarsus selected approach is viable and warrants further development, particularly in the direction of interface optimization. As such, the main goal of the TriTrap gripper, which was to showcase the tarsal chain principle as a viable approach to gripping in general, was achieved.

2.
Commun Biol ; 7(1): 36, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182875

RESUMEN

Marine mammals host a great variety of parasites, which usually co-evolved in evolutionary arms races. However, little is known about the biology of marine mammal insect parasites, and even less about physical aspects of their life in such a challenging environment. One of 13 insect species that manage to endure long diving periods in the open sea is the seal louse, Echinophthirius horridus, parasitising true seals. Its survival depends on its specialised adaptations for enduring extreme conditions such as hypoxia, temperature changes, hydrostatic pressure, and strong drag forces during host dives. To maintain a grip on the seal fur, the louse's leg morphology is equipped with modified snap hook claws and soft pad-like structures that enhance friction. Through techniques including CLSM, SEM, and histological staining, we have examined the attachment system's detailed structure. Remarkably, the seal louse achieves exceptional attachment forces on seal fur, with safety factors (force per body weight) reaching 4500 in average measurements and up to 18000 in peak values, indicating superior attachment performance compared to other insect attachment systems. These findings underscore the louse's remarkable adaptations for life in a challenging marine environment, shedding light on the relationship between structure and function in extreme ecological niches.


Asunto(s)
Buceo , Phthiraptera , Phocidae , Animales , Evolución Biológica , Peso Corporal
3.
Zool Stud ; 62: e31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023394

RESUMEN

Stick insects (Phasmatodea) are quite diverse in the Neotropical region. Among them, Xerosoma Serville belongs to Pseudophasmatidae and comprises winged, roughly brownish phasmids that resemble bark or dry branches and inhabit the Atlantic Forest in Brazil. In this study, we present a redescription and revision of the genus that include three valid species, Xerosoma canaliculatum, Xerosoma michaelis, and Xerosoma nannospinus sp. nov. Xerosoma senticosum syn. nov. was found to be a junior synonym of X. canaliculatum. We also provide an identification key and geographic records for these three species. Additionally, we present a detailed study on the morphology and natural history of X. canaliculatum with the description of its nymphal stages, egg, male genitalia, ontogeny, oviposition method, life habits, defense mechanisms, mating behavior, and other aspects regarding its biology. The study also highlights the shortcomings related to the classification of Xerosomatinae, since its tribes find themselves without proper characterization and contain heterogeneous genera. We expect to provide a basis for a proper diagnosis of Xerosomatinae and encourage future studies on this group, as there is still much to be discovered about this lineage of Neotropical stick insects.

4.
Biomimetics (Basel) ; 8(5)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37754190

RESUMEN

Attachment to the substrate is an important phenomenon that determines the survival of many organisms. Most insects utilize wet adhesion to support attachment, which is characterized by fluids that are secreted into the interface between the tarsus and the substrates. Previous research has investigated the composition and function of tarsal secretions of different insect groups, showing that the secretions are likely viscous emulsions that contribute to attachment by generating capillary and viscous adhesion, leveling surface roughness and providing self-cleaning of the adhesive systems. Details of the structural organization of these secretions are, however, largely unknown. Here, we analyzed footprints originating from the arolium and euplantulae of the stick insect Medauroidea extradentata using cryo-scanning electron microscopy (cryo-SEM) and white light interferometry (WLI). The secretion was investigated with cryo-SEM, revealing four morphologically distinguishable components. The 3D WLI measurements of the droplet shapes and volumes over time revealed distinctly different evaporation rates for different types of droplets. Our results indicate that the subfunctionalization of the tarsal secretion is facilitated by morphologically distinct components, which are likely a result of different proportions of components within the emulsion. Understanding these components and their functions may aid in gaining insights for developing adaptive and multifunctional biomimetic adhesive systems.

5.
BMC Ecol Evol ; 23(1): 17, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161371

RESUMEN

Phylliidae are herbivorous insects exhibiting impressive cryptic masquerade and are colloquially called "walking leaves". They imitate angiosperm leaves and their eggs often resemble plant seeds structurally and in some cases functionally. Despite overall morphological similarity of adult Phylliidae, their eggs reveal a significant diversity in overall shape and exochorionic surface features. Previous studies have shown that the eggs of most Phylliidae possess a specialised attachment mechanism with hierarchical exochorionic fan-like structures (pinnae), which are mantled by a film of an adhesive secretion (glue). The folded pinnae and glue respond to water contact, with the fibrous pinnae expanding and the glue being capable of reversible liquefaction. In general, the eggs of phylliids appear to exhibit varying structures that were suggested to represent specific adaptations to the different environments the eggs are deposited in. Here, we investigated the diversity of phylliid eggs and the functional morphology of their exochorionic structure. Based on the examination of all phylliid taxa for which the eggs are known, we were able to characterise eleven different morphological types. We explored the adhesiveness of these different egg morphotypes and experimentally compared the attachment performance on a broad range of substrates with different surface roughness, surface chemistry and tested whether the adhesion is replicable after detachment in multiple cycles. Furthermore, we used molecular phylogenetic methods to reconstruct the evolutionary history of different egg types and their adhesive systems within this lineage, based on 53 phylliid taxa. Our results suggest that the egg morphology is congruent with the phylogenetic relationships within Phylliidae. The morphological differences are likely caused by adaptations to the specific environmental requirements for the particular clades, as the egg morphology has an influence on the performance regarding the surface roughness. Furthermore, we show that different pinnae and the adhesive glue evolved convergently in different species. While the evolution of the Phylliidae in general appears to be non-adaptive judging on the strong similarity of the adults and nymphs of most species, the eggs represent a stage with complex and rather diverse functional adaptations including mechanisms for both fixation and dispersal of the eggs.


Asunto(s)
Adhesivos , Neoptera , Animales , Filogenia , Caminata , Insectos
6.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36606728

RESUMEN

Stick and leaf insects (Phasmatodea) are exclusively herbivores. As they settle in a broad range of habitats, they need to attach to and walk on a wide variety of plant substrates, which can vary in their surface free energy (SFE). The adhesive microstructures (AMs) on the euplantulae of phasmids are assumed to be adapted to such substrate properties. Moreover, the natural substrates can often be covered with water as a result of high relative humidity or rain. Although considerable experimental research has been carried out on different aspects of stick insect attachment, the adaptations to cope with the influence of flooded water on attachment performance remain unclear. To elucidate the role of AMs in this context, we here measured attachment forces in three species of stick insects with different AMs. The results show that attachment forces of the three species studied were influenced by the SFE and the presence of water: they all showed higher pull-off (vertical) and traction (horizontal) forces on dry surfaces, compared with when the surfaces were covered with a water film. However, the extent to which the surface properties influenced attachment differed depending on the species and its AMs. All three species showed approximately the same attachment performance on dry surfaces with different surface free energy but maintained attachment underwater to different extents.


Asunto(s)
Adhesivos , Insectos , Animales , Fenómenos Biomecánicos , Propiedades de Superficie , Agua , Adhesividad
7.
Insect Sci ; 30(5): 1507-1517, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36434816

RESUMEN

The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36152036

RESUMEN

Insect attachment devices and capabilities have been subject to research efforts for decades, and even though during that time considerable progress has been made, numerous questions remain. Different types of attachment devices are known, alongside most of their working principles, however, some details have yet to be understood. For instance, it is not clear why insects for the most part developed pairs of claws, instead of either three or a single one. In this paper, we investigated the gripping forces generated by the stick insect Sungaya inexpectata, in dependence on the number of available claws. The gripping force experiments were carried out on multiple, standardized substrates of known roughness, and conducted in directions both perpendicular and parallel to the substrate. This was repeated two times: first with a single claw being amputated from each of the animals' legs, then with both claws removed, prior to the measurement. The adhesive pads (arolia) and frictional pads (euplantulae) remained intact. It was discovered that the removal of claws had a detractive effect on the gripping forces in both directions, and on all substrates. Notably, this also included the control of smooth surfaces on which the claws were unable to find any asperities to grip on. The results show that there is a direct connection between the adhesive performance of the distal adhesive pad (arolium) and the presence of intact claws. These observations show collective effects between different attachment devices that work in concert during locomotion, and grant insight into why most insects possess two claws.


Asunto(s)
Insectos , Locomoción , Animales , Fenómenos Biomecánicos , Insectos/fisiología , Locomoción/fisiología , Fricción , Extremidades/fisiología
9.
Biomimetics (Basel) ; 7(4)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36412700

RESUMEN

Plants and animals are often used as a source for inspiration in biomimetic engineering. However, stronger engagement of biologists is often required in the field of biomimetics. The actual strength of using biological systems as a source of inspiration for human problem solving does not lie in a perfect copy of a single system but in the extraction of core principles from similarly functioning systems that have convergently solved the same problem in their evolution. Adhesive systems are an example of such convergent traits that independently evolved in different organisms. We herein compare two analogous adhesive systems, one from plants seeds and one from insect eggs, to test their properties and functional principles for differences and similarities in order to evaluate the input that can be potentially used for biomimetics. Although strikingly similar, the eggs of the leaf insect Phyllium philippinicum and the seeds of the ivy gourd Coccinia grandis make use of different surface structures for the generation of adhesion. Both employ a water-soluble glue that is spread on the surface via reinforcing fibrous surface structures, but the morphology of these structures is different. In addition to microscopic analysis of the two adhesive systems, we mechanically measured the actual adhesion generated by both systems to quantitatively compare their functional differences on various standardized substrates. We found that seeds can generate much stronger adhesion in some cases but overall provided less reliable adherence in comparison to eggs. Furthermore, eggs performed better regarding repetitive attachment. The similarities of these systems, and their differences resulting from their different purposes and different structural/chemical features, can be informative for engineers working on technical adhesive systems.

10.
J Morphol ; 283(12): 1561-1576, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254816

RESUMEN

Hippoboscidae and Nycteribiidae of the dipteran superfamily Hippoboscoidea are obligate ectoparasites, which feed on the blood of different mammals. Due to their limited flight capability, the attachment system on all tarsi is of great importance for a secure grasp onto their host and thus for their survival. In this study, the functional morphology of the attachment system of two hippoboscid species and two nycteribiid species was compared in their specificity to the host substrate. Based on data from scanning electron microscopy and confocal laser scanning microscopy, it was shown that the attachment systems of both Hippoboscidae and Nycteribiidae (Hippoboscoidea) differ greatly from that of other calyptrate flies and are uniform within the respective families. All studied species have an attachment system with two monodentate claws and two pulvilli. The claws and pulvilli of the Hippoboscidae are asymmetric, which is an adaptation to the fur of even-toed ungulates (Artiodactyla). The fur of these mammals possesses both, thinner woolen and thicker coat hair; thus, the asymmetry of the attachment system of the hippoboscid species enables a secure attachment to all surfaces of their hosts. The claws and pulvilli of the nyceribiid species do not show an asymmetry, since the fur of their bat (Chiroptera) hosts consists of hairs with the same thickness. The claws are important for the attachment to mammals' fur, because they enable a secure grip by mechanical interlocking of the hairs through the claws. Additionally, well-developed pulvilli are able to attach on thicker hairs of Artiodactyla or on smooth substrates such as the skin.


Asunto(s)
Quirópteros , Dípteros , Phthiraptera , Animales , Cabello
11.
Insects ; 13(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36292904

RESUMEN

Herbivorous insects and plants exemplify a longstanding antagonistic coevolution, resulting in the development of a variety of adaptations on both sides. Some plant surfaces evolved features that negatively influence the performance of the attachment systems of insects, which adapted accordingly as a response. Stick insects (Phasmatodea) have a well-adapted attachment system with paired claws, pretarsal arolium and tarsal euplantulae. We measured the attachment ability of Medauroidea extradentata with smooth surface on the euplantulae and Sungaya inexpectata with nubby microstructures of the euplantulae on different plant substrates, and their pull-off and traction forces were determined. These species represent the two most common euplantulae microstructures, which are also the main difference between their respective attachment systems. The measurements were performed on selected plant leaves with different properties (smooth, trichome-covered, hydrophilic and covered with crystalline waxes) representing different types among the high diversity of plant surfaces. Wax-crystal-covered substrates with fine roughness revealed the lowest, whereas strongly structured substrates showed the highest attachment ability of the Phasmatodea species studied. Removal of the claws caused lower attachment due to loss of mechanical interlocking. Interestingly, the two species showed significant differences without claws on wax-crystal-covered leaves, where the individuals with nubby euplantulae revealed stronger attachment. Long-lasting effects of the leaves on the attachment ability were briefly investigated, but not confirmed.

12.
BMC Ecol Evol ; 22(1): 39, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35350992

RESUMEN

BACKGROUND: In most arthropods, adult females are larger than males, and male competition is a race to quickly locate and mate with scattered females (scramble competition polygyny). Variation in body size among males may confer advantages that depend on context. Smaller males may be favored due to more efficient locomotion leading to higher mobility during mate searching. Alternatively, larger males may benefit from increased speed and higher survivorship. While the relationship between male body size and mobility has been investigated in several systems, how different aspects of male body morphology specifically affect their locomotor performance in different contexts is often unclear. RESULTS: Using a combination of empirical measures of flight performance and modelling of body aerodynamics, we show that large body size impairs flight performance in male leaf insects (Phyllium philippinicum), a species where relatively small and skinny males fly through the canopy in search of large sedentary females. Smaller males were more agile in the air and ascended more rapidly during flight. Our models further predicted that variation in body shape would affect body lift and drag but suggested that flight costs may not explain the evolution of strong sexual dimorphism in body shape in this species. Finally, empirical measurements of substrate adhesion and subsequent modelling of landing impact forces suggested that smaller males had a lower risk of detaching from the substrates on which they walk and land. CONCLUSIONS: By showing that male body size impairs their flight and substrate adhesion performance, we provide support to the hypothesis that smaller scrambling males benefit from an increased locomotor performance and shed light on the evolution of sexual dimorphism in scramble competition mating systems.


Asunto(s)
Insectos , Conducta Sexual Animal , Animales , Tamaño Corporal , Femenino , Masculino , Hojas de la Planta , Caracteres Sexuales
13.
J R Soc Interface ; 18(182): 20210539, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520690

RESUMEN

Sandy pitfall traps of antlions are elaborate constructions to capture prey. Antlions exploit the interactions between the particles in their habitat and build a stable trap. This trap is close to the unstable state; prey items will slide towards the centre-where the antlion ambushes-when entering the trap. This is efficient but requires permanent maintenance. According to the present knowledge, antlions throw sand, mainly to cause sandslides towards the centre of the pit. We hypothesized that: (i) sand-throwing causes sandslides towards the centre of the pit and (ii) sand-throwing constantly maintains the pitfall trap and thus keeps its efficiency high. Using laboratory experiments, as well as finite-element analysis, we tested these hypotheses. We show, experimentally and numerically, that sand that accumulates at the centre of the pit will be removed continuously by sand-throwing, this maintenance is leading to slope condition close to an unstable state. This keeps the slope angle steep and the efficiency of the trap constant. Furthermore, the resulting sandslides can relocate the trapped prey towards the centre of the pit. This study adds further insights from specific mechanical properties of a granular medium into the behavioural context of hunting antlion larvae.


Asunto(s)
Insectos , Arena , Animales , Ecosistema , Larva , Conducta Predatoria
14.
Beilstein J Nanotechnol ; 12: 725-743, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354900

RESUMEN

Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.

15.
Zookeys ; 1055: 1-41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393570

RESUMEN

With every molecular review involving Chitoniscus Stål, 1875 sensu lato samples from Fiji and New Caledonia revealing polyphyly, the morphology from these two distinct clades was extensively reviewed. Morphological results agree with all previously published molecular studies and therefore Trolicaphyllium gen. nov. is erected to accommodate the former Chitoniscus sensu lato species restricted to New Caledonia, leaving the type species Chitoniscuslobiventris (Blanchard, 1853) and all other Fijian species within Chitoniscus sensu stricto. Erection of this new genus for the New Caledonian species warrants the following new combinations: Trolicaphylliumbrachysoma (Sharp, 1898), comb. nov., Trolicaphylliumerosus (Redtenbachher, 1906), comb. nov., and Trolicaphylliumsarrameaense (Größer, 2008a), comb. nov. Morphological details of the female, male, freshly hatched nymph, and egg are illustrated and discussed alongside the Chitoniscus sensu stricto in order to differentiate these two clades which have been mistaken as one for decades.

16.
Zookeys ; 969: 43-84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013167

RESUMEN

After successful laboratory rearing of both males and females from a single clutch of eggs, the genus Nanophyllium Redtenbacher, 1906 (described only from males) and the frondosum species group within Phyllium (Pulchriphyllium) Griffini, 1898 (described only from females) are found to be the opposite sexes of the same genus. This rearing observation finally elucidates the relationship of these two small body sized leaf insect groups which, for more than a century, have never been linked before. This paper synonymizes the frondosum species group with Nanophyllium Redtenbacher, 1906 in order to create a singular and clearly defined taxonomic group. Five species are transferred from the Phyllium (Pulchriphyllium) frondosum species group and create the following new combinations: Nanophyllium asekiense (Größer, 2002), comb. nov.; Nanophyllium chitoniscoides (Größer, 1992), comb. nov.; Nanophyllium frondosum (Redtenbacher, 1906), comb. nov.; Nanophyllium keyicum (Karny, 1914), comb. nov.; Nanophyllium suzukii (Größer, 2008), comb. nov. The only taxon from this species group not transferred from the frondosum species group to Nanophyllium is Phyllium (Pulchriphyllium) groesseri Zompro, 1998. Based on protibial exterior lobes, this species belongs in the schultzei species group as described in Hennemann et al. 2009 and is therefore excluded from further discussion here. The rearing of Nanophyllium also yielded the male Nanophyllium asekiense (Größer, 2002), comb. nov. thus, enabling comparison of this male to the other previously known Nanophyllium species. Two new species of nano-leaf insects are described within, Nanophyllium miyashitai sp. nov., from Morobe Province, Papua New Guinea, and Nanophyllium daphne sp. nov., from Biak Island, Papua Province, Indonesia. With such distinct sexual dimorphism in Nanophyllium between sexes, which have only now been matched up via captive rearing, illustrated within are numerous specimens which might represent the unknown opposite sexes of the many currently known species of Nanophyllium. Due to pronounced sexual dimorphism in Nanophyllium, only future captive rearing or molecular analysis will match up the many unknown sexes. To conclude, with the description of two new Nanophyllium species, dichotomous keys to species for known males and females are presented.

17.
J Exp Biol ; 223(Pt 17)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723763

RESUMEN

Phasmatodea (stick and leaf insects) are herbivorous insects well camouflaged on plant substrates as a result of cryptic masquerade. Also, their close association with plants has allowed them to adapt to different substrate geometries and surface topographies of the plants they imitate. Stick insects are gaining increasing attention in attachment- and locomotion-focused research. However, most studies experimentally investigating stick insect attachment have been performed either on single attachment pads or on flat surfaces. In contrast, curved surfaces, especially twigs or stems of plants, are dominant substrates for phytophagous insects, but not much is known about the influence of curvature on their attachment. In this study, by combining analysis of tarsal usage with mechanical traction and pull-off force measurements, we investigated the attachment performance on curved substrates with different diameters in two species of stick insects with different tarsal lengths. We provide the first quantitative data for forces generated by stick insects on convex curved substrates and show that the curvature significantly influences attachment ability in both species. Within the studied range of substrate curvatures, traction force decreases and pull-off force increases with increasing curvature. Shorter tarsi demonstrate reduced forces; however, tarsus length only has an influence for diameters thinner than the tarsal length. The attachment force generally depends on the number of tarsi/tarsomeres in contact, tarsus/leg orientation and body posture on the surface. Pull-off force is also influenced by the tibiotarsal angle, with higher pull-off force for lower angles, while traction force is mainly influenced by load, i.e. adduction force.


Asunto(s)
Extremidades , Insectos , Animales , Fenómenos Biomecánicos , Locomoción , Propiedades de Superficie
18.
Insects ; 11(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605269

RESUMEN

Leaf insects (Phasmatodea: Phylliidae) exhibit perfect crypsis imitating leaves. Although the special appearance of the eggs of the species Phyllium philippinicum, which imitate plant seeds, has received attention in different taxonomic studies, the attachment capability of the eggs remains rather anecdotical. We herein elucidate the specialized attachment mechanism of the eggs of this species and provide the first experimental approach to systematically characterize the functional properties of their adhesion by using different microscopy techniques and attachment force measurements on substrates with differing degrees of roughness and surface chemistry, as well as repetitive attachment/detachment cycles while under the influence of water contact. We found that a combination of folded exochorionic structures (pinnae) and a film of adhesive secretion contribute to attachment, which both respond to water. Adhesion is initiated by the glue, which becomes fluid through hydration, enabling adaption to the surface profile. Hierarchically structured pinnae support the spreading of the glue and reinforcement of the film. This combination aids the egg's surface in adapting to the surface roughness, yet the attachment strength is additionally influenced by the egg's surface chemistry, favoring hydrophilic substrates. Repetitive detachment and water-mediated adhesion can optimize the location of the egg to ensure suitable environmental conditions for embryonic development. Furthermore, this repeatable and water-controlled adhesion mechanism can stimulate further research for biomimeticists, ecologists and conservationalists.

19.
J Exp Biol ; 222(Pt 23)2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31727762

RESUMEN

Stick insects are well adapted in their locomotion to various surfaces and topographies of natural substrates. Single pad measurements characterised the pretarsal arolia of these insects as shear-sensitive adhesive pads and the tarsal euplantulae as load-sensitive friction pads. Different attachment microstructures on the euplantulae reveal an adaptation of smooth euplantulae to smooth surfaces and nubby eupantulae to a broader range of surface roughness. However, how different attachment pads and claws work in concert and how strong the contribution of different structures is to the overall attachment performance remains unclear. We therefore assessed combinatory effects in the attachment system of two stick insect species with different types of euplantular microstructures by analysing their usage in various posture situations and the performance on different levels of substrate roughness. For comparison, we provide attachment force data of the whole attachment system. The combination of claws, arolia and euplantulae provides mechanical interlocking on rough surfaces, adhesion and friction on smooth surfaces in different directions, and facilitates attachment on different inclines and on a broad range of surface roughness, with the least performance in the range 0.3-1.0 µm. On smooth surfaces, stick insects use arolia always, but employ euplantulae if the body weight can generate load on them (upright, wall). On structured surfaces, claws enable mechanical interlocking at roughnesses higher than 12 µm. On less-structured surfaces, the attachment strength depends on the use of pads and, corroborating earlier studies, favours smooth pads on smooth surfaces, but nubby euplantulae on micro-rough surfaces.


Asunto(s)
Adhesividad , Insectos/fisiología , Locomoción , Animales , Fenómenos Biomecánicos , Extremidades/fisiología , Insectos/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Especificidad de la Especie , Propiedades de Superficie
20.
Soft Matter ; 15(47): 9742-9750, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31742303

RESUMEN

The articulated appendages of arthropods are highly adaptable and potentially multifunctional, used for walking, swimming, feeding, prey capture, or other functions. Webspinners (Order Embioptera) are a paragon in this context. In contrast to other arthropods producing silk, they utilize their front feet for silk production. However, employing the same leg for alternative functions rather than for pure locomotion potentially imposes constraints and compromises. We here present morphological and experimental evidence for a "passive" pressure-induced silk spinning mechanism induced by external mechanical stimuli. Furthermore, we demonstrate that, as a consequence of the conflicting functions for their front feet, webspinners have evolved a unique style of walking that reduces the potentially problematic contact between silk ejectors and the substrate. Here we answer for the first time a long-term question within this enigmatic group of insects-how webspinners can use their front feet to spin their nanoscale silk. This knowledge may open the door for experimental studies on an artificial spinning process and for future utilization in applied fields of robotics or chemistry.


Asunto(s)
Neoptera/fisiología , Seda , Animales , Reacción de Fuga , Femenino , Estimulación Física , Presión , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...