Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mutat ; 43(12): 1795-1807, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35998261

RESUMEN

Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Exoma , Secuenciación del Exoma , Ubiquitina-Proteína Ligasas/genética
2.
Nat Commun ; 10(1): 4679, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31616000

RESUMEN

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2-whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present with autism, intellectual disability, and delayed language and motor development. In addition to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. Although this observation requires replication to establish statistical significance, it also suggests that mutations in this gene are associated with a variety of neuropsychiatric disorders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, but shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.


Asunto(s)
Trastornos Mentales/genética , Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Adolescente , Adulto , Animales , Trastorno Autístico/genética , Trastorno Autístico/psicología , Conducta Animal , Encéfalo/metabolismo , Niño , Preescolar , Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/psicología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/psicología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos Mentales/psicología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Trastornos del Neurodesarrollo/psicología , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Secuenciación del Exoma , Adulto Joven
3.
Brain ; 142(9): 2617-2630, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327001

RESUMEN

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Encéfalo/embriología , Encéfalo/patología , Variación Genética/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Proteínas Adaptadoras Transductoras de Señales/química , Adolescente , Animales , Proteínas Relacionadas con la Autofagia/química , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Estructura Secundaria de Proteína
4.
JAMA Neurol ; 76(3): 342-350, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575854

RESUMEN

Importance: The identification and understanding of the monogenic causes of neurodevelopmental disorders are of high importance for personalized treatment and genetic counseling. Objective: To identify and characterize novel genes for a specific neurodevelopmental disorder characterized by refractory seizures, respiratory failure, brain abnormalities, and death in the neonatal period; describe the outcome of glutaminase deficiency in humans; and understand the underlying pathological mechanisms. Design, Setting, and Participants: We performed exome sequencing of cases of neurodevelopmental disorders without a clear genetic diagnosis, followed by genetic and bioinformatic evaluation of candidate variants and genes. Establishing pathogenicity of the variants was achieved by measuring metabolites in dried blood spots by a hydrophilic interaction liquid chromatography method coupled with tandem mass spectrometry. The participants are 2 families with a total of 4 children who each had lethal, therapy-refractory early neonatal seizures with status epilepticus and suppression bursts, respiratory insufficiency, simplified gyral structures, diffuse volume loss of the brain, and cerebral edema. Data analysis occurred from October 2017 to June 2018. Main Outcomes and Measures: Early neonatal epileptic encephalopathy with glutaminase deficiency and lethal outcome. Results: A total of 4 infants from 2 unrelated families, each of whom died less than 40 days after birth, were included. We identified a homozygous frameshift variant p.(Asp232Glufs*2) in GLS in the first family, as well as compound heterozygous variants p.(Gln81*) and p.(Arg272Lys) in GLS in the second family. The GLS gene encodes glutaminase (Enzyme Commission 3.5.1.2), which plays a major role in the conversion of glutamine into glutamate, the main excitatory neurotransmitter of the central nervous system. All 3 variants probably lead to a loss of function and thus glutaminase deficiency. Indeed, glutamine was increased in affected children (available z scores, 3.2 and 11.7). We theorize that the potential reduction of glutamate and the excess of glutamine were a probable cause of the described physiological and structural abnormalities of the central nervous system. Conclusions and Relevance: We identified a novel autosomal recessive neurometabolic disorder of loss of function of glutaminase that leads to lethal early neonatal encephalopathy. This inborn error of metabolism underlines the importance of GLS for appropriate glutamine homeostasis and respiratory regulation, signal transduction, and survival.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Glutaminasa/deficiencia , Mutación/genética , Encéfalo/metabolismo , Encefalopatías/diagnóstico , Epilepsia/diagnóstico , Femenino , Glutamina/sangre , Humanos , Lactante , Recién Nacido , Masculino , Convulsiones/diagnóstico , Convulsiones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...