Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(19): 10956-10974, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34643711

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.


Asunto(s)
Proteínas Bacterianas/genética , Transferencia de Gen Horizontal , Islas Genómicas , Pseudomonas aeruginosa/genética , Transactivadores/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cromosomas Bacterianos , Conjugación Genética , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Regulón , Transactivadores/metabolismo , Transcripción Genética , Factores de Virulencia/metabolismo
3.
NPJ Biofilms Microbiomes ; 6(1): 54, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188190

RESUMEN

The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Mutación , Shewanella/fisiología , Anabasina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimiotaxis , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Nicotina/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Fosforilación
4.
Sci Rep ; 9(1): 6496, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019225

RESUMEN

Biofilm formation is a complex process resulting from the action of imbricated pathways in response to environmental cues. In this study, we showed that biofilm biogenesis in the opportunistic pathogen Pseudomonas aeruginosa depends on the availability of RpoS, the sigma factor regulating the general stress response in bacteria. Moreover, it was demonstrated that RpoS is post-translationally regulated by the HsbR-HsbA partner switching system as has been demonstrated for its CrsR-CrsA homolog in Shewanella oneidensis. Finally, it was established that HsbA, the anti-sigma factor antagonist, has a pivotal role depending on its phosphorylation state since it binds HsbR, the response regulator, when phosphorylated and FlgM, the anti-sigma factor of FliA, when non-phosphorylated. The phosphorylation state of HsbA thus drives the switch between the sessile and planktonic way of life of P. aeruginosa by driving the release or the sequestration of one or the other of these two sigma factors.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Factor sigma/genética , Proteínas Bacterianas/metabolismo , Modelos Genéticos , Fosforilación , Unión Proteica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Factor sigma/metabolismo
5.
Sci Rep ; 7(1): 11262, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900144

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections and has developed resistance mechanisms due to its ability to promote biofilm formation and evade host adaptive immune responses. Here, we investigate the functional role of the periplasmic detector domain (GacSPD) from the membrane-bound GacS histidine kinase, which is one of the key players for biofilm formation and coordination of bacterial lifestyles. A gacS mutant devoid of the periplasmic detector domain is severely defective in biofilm formation. Functional assays indicate that this effect is accompanied by concomitant changes in the expression of the two RsmY/Z small RNAs that control activation of GacA-regulated genes. The solution NMR structure of GacSPD reveals a distinct PDC/PAS α/ß fold characterized by a three-stranded ß-sheet flanked by α-helices and an atypical major loop. Point mutations in a putative ligand binding pocket lined by positively-charged residues originating primarily from the major loop impaired biofilm formation. These results demonstrate the functional role of GacSPD, evidence critical residues involved in GacS/GacA signal transduction system that regulates biofilm formation, and document the evolutionary diversity of the PDC/PAS domain fold in bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Pseudomonas aeruginosa/enzimología , Dominio Catalítico , Histidina Quinasa/genética , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Periplasmáticas/genética , Mutación Puntual , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
6.
Development ; 138(8): 1643-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21427146

RESUMEN

Ascidians are members of the vertebrate sister group Urochordata. Their larvae exhibit a chordate body plan, which forms by a highly accelerated embryonic strategy involving a fixed cell lineage and small cell numbers. We report a detailed analysis of the specification of three of the five pairs of motoneurons in the ascidian Ciona intestinalis and show that despite well-conserved gene expression patterns and embryological outcomes compared with vertebrates, key signalling molecules have adopted different roles. We employed a combination of cell ablation and gene manipulation to analyse the function of two signalling molecules with key roles in vertebrate motoneuron specification that are known to be expressed equivalently in ascidians: the inducer Sonic hedgehog, produced ventrally by the notochord and floorplate; and the inhibitory BMP2/4, produced on the lateral/dorsal side of the neural plate. Our surprising conclusion is that neither BMP2/4 signalling nor the ventral cell lineages expressing hedgehog play crucial roles in motoneuron formation in Ciona. Furthermore, BMP2/4 overexpression induced ectopic motoneurons, the opposite of its vertebrate role. We suggest that the specification of motoneurons has been modified during ascidian evolution, such that BMP2/4 has adopted a redundant inductive role rather than a repressive role and Nodal, expressed upstream of BMP2/4 in the dorsal neural tube precursors, acts as a motoneuron inducer during normal development. Thus, our results uncover significant differences in the mechanisms used for motoneuron specification within chordates and also highlight the dangers of interpreting equivalent expression patterns as indicative of conserved function in evo-devo studies.


Asunto(s)
Urocordados/embriología , Urocordados/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Ciona intestinalis/embriología , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Urocordados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA