Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 12(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36611975

RESUMEN

Autophagy is a cellular catabolic process in the evolutionarily conservative turnover of intracellular substances in eukaryotes, which is involved in both immune homeostasis and injury repairment. CXCR3 is an interferon-induced chemokine receptor that participates in immune regulation and inflammatory responses. However, CXCR3 regulating intestine injury via autophagy along with the precise underlying mechanism have yet to be elucidated. In the current study, we employed an LPS-induced inflammatory mouse model and confirmed that CXCR3 knockout significantly attenuates intestinal mucosal structural damage and increases tight junction protein expression. CXCR3 knockout alleviated the LPS-induced increase in the expression of inflammatory factors including TNF-α, IL-6, p-65, and JNK-1 and enhanced autophagy by elevating LC3II, ATG12, and PINK1/Parkin expression. Mechanistically, the function of CXCR3 regarding autophagy and immunity was investigated in IPEC-J2 cells. CXCR3 inhibition by AMG487 enhanced autophagy and reduced the inflammatory response, as well as blocked the NF-κB signaling pathway and elevated the expression of the tight junction protein marker Claudin-1. Correspondingly, these effects were abolished by autophagy inhibition with the selective blocker, 3-MA. Moreover, the immunofluorescence assay results further demonstrated that CXCR3 inhibition-mediated autophagy blocked p65 nuclear translocation, and the majority of Claudin-1 was located at the tight junctions. In conclusion, CXCR3 inhibition reversed LPS-induced intestinal barrier damage and alleviated the NF-κB signaling pathway via enhancing autophagy. These data provided a theoretical basis for elucidating the immunoregulatory mechanism by targeting CXCR3 to prevent intestinal dysfunction.


Asunto(s)
Enfermedades Gastrointestinales , FN-kappa B , Animales , Ratones , Autofagia , Claudina-1 , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Proteínas de Uniones Estrechas/metabolismo
2.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364817

RESUMEN

L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Humanos , Citrulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/complicaciones , Estrés Oxidativo , Suplementos Dietéticos , Autofagia
3.
Virol Sin ; 36(2): 176-186, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33141406

RESUMEN

African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia. There is no vaccine and treatment available. Complex immune escape strategies of African swine fever virus (ASFV) are crucial factors affecting immune prevention and vaccine development. MGF360 genes have been implicated in the modulation of the IFN-I response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we demonstrated that ASFV MGF360-12L (MGF360 families 12L protein) significantly inhibited the mRNA transcription and promoter activity of IFN-ß and NF-κB, accompanied by decreases of IRF3, STING, TBK1, ISG54, ISG56 and AP-1 mRNA transcription. Also, MGF360-12L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal (NLS). Additionally, MGF360-12L could interact with KPNA2, KPNA3, and KPNA4, which interrupted the interaction between p65 and KPNA2, KPNA3, KPNA4. We further found that MGF360-12L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins. These findings suggested that MGF360-12L could inhibit the IFN-I production by blocking the interaction of importin α and NF-κB signaling pathway, which might reveal a novel strategy for ASFV to escape the host innate immune response.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Animales , Interferón beta/metabolismo , FN-kappa B , Transducción de Señal , Porcinos , alfa Carioferinas/genética
4.
Gene ; 763: 145071, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-32827682

RESUMEN

The previous study indicated that transport stress resulted in oxidative damage and autophagy/mitophagy elevation, companied by NOX1 over- expression in the jejunal tissues of pigs. However, the transportation-related gene expression profile and NOX1 function in intestine remain to be explicated. In the current study, differentially expressed genes involved in PI3K-Akt and NF-κB pathways, oxidative stress and autophagy process have been identified in pig jejunal tissues after transcriptome analysis following transportation. The physiological functions of NOX1 down-regulation were explored against oxidative damage and excessive autophagy in porcine intestinal epithelial cells (IPEC-1) following NOX1 inhibitor ML171 and H2O2 treatments. NOX1 down-regulation could decrease the content of Malondialdehyde (MDA), Lactic dehydrogenase (LDH) activity and reactive oxygen species (ROS) level, and up-regulate superoxide dismutase (SOD) activity. Furthermore, mitochondrial membrane potential and content were restored, and the expressions of tight junction proteins (Claudin-1 and ZO-1) were also increased. Additionally, NOX1 inhibitior could down-regulate the expression of autophagy-associated proteins (ATG5, LC3, p62), accompanied by activating SIRT1/PGC-1α pathway. NOX1 down-regulation might alleviate oxidative stress-induced mitochondria damage and intestinal mucosal injury via modulating excessive autophagy and SIRT1/PGC-1α signaling pathway. The data will shed light on the molecular mechanism of NOX1 on intestine oxidative damage following pig transportation.


Asunto(s)
Autofagia , Enterocitos/metabolismo , NADPH Oxidasa 1/metabolismo , Estrés Oxidativo , Estrés Psicológico/metabolismo , Transcriptoma , Animales , Línea Celular , Femenino , Masculino , Mitocondrias/metabolismo , NADPH Oxidasa 1/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Estrés Psicológico/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA