Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 16323, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009669

RESUMEN

Vascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus. However, the role of macrophage-derived EVs in the progression of vascular calcification is largely unknown. In this study, we investigated whether macrophage-derived EVs contribute to the osteogenic differentiation of VSMCs under high glucose conditions. We isolated EVs that were secreted by murine peritoneal macrophages under normal glucose (EVs-NG) or high glucose (EVs-HG) conditions. miRNA array analysis in EVs from murine macrophages showed that miR-17-5p was significantly increased in EVs-HG compared with EVs-NG. Prediction analysis with miRbase identified transforming growth factor ß receptor type II (TGF-ß RII) as a potential target of miR-17-5p. EVs-HG as well as miR-17-5p overexpression with lipid nanoparticles inhibited the gene expression of Runx2, and TGF-ß RII. Furthermore, we demonstrated that VSMCs transfected with miR-17-5p mimic inhibited calcium deposition. Our findings reveal a novel role of macrophage-derived EVs in the negative regulation of osteogenic differentiation in VSMCs under high glucose conditions.


Asunto(s)
Diferenciación Celular , Vesículas Extracelulares , Glucosa , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Osteogénesis , Transducción de Señal , Factor de Crecimiento Transformador beta , MicroARNs/genética , MicroARNs/metabolismo , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Glucosa/farmacología , Glucosa/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Vesículas Extracelulares/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Masculino , Ratones Endogámicos C57BL , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética
3.
Sci Rep ; 12(1): 14902, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050346

RESUMEN

Emerging evidence suggests that 7-ketocholesterol (7-KC), one of the most abundant dietary oxysterols, causes inflammation and cardiovascular diseases. Here we show the deteriorating effects of dietary 7-KC on myocardial ischemia-reperfusion (IR) injury and detailed the molecular mechanisms. A high-fat high-cholesterol diet containing 7-KC (7KWD) for 3 weeks increased the plasma 7-KC level compared with high-fat high-cholesterol diet in mice. In wild-type mice but not in CCR2-/- mice, dietary 7-KC increased the myocardial infarct size after IR. Flow cytometry revealed that the ratio of Ly-6Chigh inflammatory monocytes to total monocytes was increased in the 7KWD group. Unbiased RNA sequencing using murine primary macrophages revealed that 7-KC regulated the expression of transcripts related to inflammation and cholesterol biosynthesis. We further validated that in vitro, 7-KC induced endoplasmic reticulum stress, mitochondrial reactive oxygen species production, and nuclear factor-kappa B activation, which are associated with increased mRNA levels of proinflammatory cytokines. Administration of N-acetyl-L-cysteine or siRNA-mediated knockdown of PKR-like endoplasmic reticulum kinase or endoplasmic reticulum oxidase 1α suppressed the levels of 7-KC-induced inflammation. Dietary 7-KC exacerbates myocardial IR injury through monocyte/macrophage-mediated inflammation. Endoplasmic reticulum stress and oxidative stress are involved in the 7-KC-induced proinflammatory response in macrophages.


Asunto(s)
Daño por Reperfusión Miocárdica , Daño por Reperfusión , Animales , Dieta , Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Cetocolesteroles , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA