Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 10(3): 3214-3221, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26816294

RESUMEN

Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Análisis de la Célula Individual/instrumentación , Transistores Electrónicos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Disulfuros/química , Electrodos , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Hexoquinasa/metabolismo , Humanos , Molibdeno/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Pirroles/química , Saccharomyces cerevisiae/enzimología
2.
ACS Nano ; 8(1): 875-84, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24377306

RESUMEN

The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Electrodos , Nanoestructuras , Peróxido de Hidrógeno/análisis , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Oxígeno/análisis , Análisis de la Célula Individual
3.
Anal Chem ; 85(19): 9333-42, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24004146

RESUMEN

Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.


Asunto(s)
Capsaicina/metabolismo , Ganglios Espinales/química , Nanotecnología/instrumentación , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/química , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Canales Catiónicos TRPV/química
4.
Proc Natl Acad Sci U S A ; 109(29): 11540-5, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22611191

RESUMEN

We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5-100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5-3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences.


Asunto(s)
Diagnóstico por Imagen/métodos , Técnicas Electroquímicas/métodos , Microscopía de Sonda de Barrido/métodos , Nanoestructuras/química , Animales , Línea Celular Tumoral , Electrodos , Fluorescencia , Humanos , Células PC12 , Ratas , Factores de Tiempo
5.
Nanomedicine (Lond) ; 6(3): 565-75, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21542692

RESUMEN

Cells naturally operate on the nanoscale level, with molecules combining together to form complex molecular machines, which can work together to enable normal cell function or go wrong as in the case of many diseases. Visualizing these key processes on the nanoscale has been difficult and two main approaches have been used to date; nanometer resolution imaging of fixed cells using electron microscopy, or imaging live cells using optical or fluorescence microscopy, with a resolution of a few hundred nanometers. Scanning probe microscopy has the potential to allow live cells to be imaged at nanoscale resolution and a noncontact method based on the use of a nanopipette probe has been developed over the last 10 years that allows both topographic and functional imaging. The rapid progress in this area of research over the last 4 years is reviewed in this article, which shows that imaging of complex cellular structures and tissues is now possible and that these methods are now sufficiently mature to provide new insights into important diseases.


Asunto(s)
Microscopía de Sonda de Barrido/instrumentación , Microscopía de Sonda de Barrido/métodos , Imagen Molecular , Nanotecnología , Membrana Celular/ultraestructura , Elasticidad , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...