Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Integr Plant Biol ; 65(10): 2380-2394, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37534615

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant defense against phytopathogens downstream of immune receptor complexes. The amplitude and duration of MAPK activation must be strictly controlled, but the underlying mechanism remains unclear. Here, we identified Arabidopsis CPL1 (C-terminal domain phosphatase-like 1) as a negative regulator of microbe-associated molecular pattern (MAMP)-triggered immunity via a forward-genetic screen. Disruption of CPL1 significantly enhanced plant resistance to Pseudomonas pathogens induced by the bacterial peptide flg22. Furthermore, flg22-induced MPK3/MPK4/MPK6 phosphorylation was dramatically elevated in cpl1 mutants but severely impaired in CPL1 overexpression lines, suggesting that CPL1 might interfere with flg22-induced MAPK activation. Indeed, CPL1 directly interacted with MPK3 and MPK6, as well as the upstream MKK4 and MKK5. A firefly luciferase-based complementation assay indicated that the interaction between MKK4/MKK5 and MPK3/MPK6 was significantly reduced in the presence of CPL1. These results suggest that CPL1 plays a novel regulatory role in suppressing MAMP-induced MAPK cascade activation and MAMP-triggered immunity to bacterial pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Quinasas Activadas por Mitógenos/genética , Arabidopsis/metabolismo , ARN Polimerasa II/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Fosfoproteínas Fosfatasas/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
New Phytol ; 230(1): 275-289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314087

RESUMEN

Fusarium wilt caused by the ascomycete fungus Fusarium oxysporum is a devastating disease of many economically important crops. The mechanisms underlying plant responses to F. oxysporum infections remain largely unknown. We demonstrate here that a water-soluble, heat-resistant and nonproteinaceous F. oxysporum cell wall extract (FoCWE) component from multiple F. oxysporum isolates functions as a race-nonspecific elicitor, also termed pathogen-associated molecular pattern (PAMP). FoCWE triggers several demonstrated immune responses, including mitogen-activated protein (MAP) kinase phosphorylation, reactive oxygen species (ROS) burst, ethylene production, and stomatal closure, in cotton and Arabidopsis. Pretreated FoCWE protects cotton seeds against infections by virulent F. oxysporum f. sp. vasinfectum (Fov), and Arabidopsis plants against the virulent bacterium, Pseudomonas syringae, suggesting the potential application of FoCWEs in crop protection. Host-mediated responses to FoCWE do not appear to require LYKs/CERK1, BAK1 or SOBIR1, which are commonly involved in PAMP perception and/or signalling. However, FoCWE responses and Fusarium resistance in cotton partially require two receptor-like proteins, GhRLP20 and GhRLP31. Transcriptome analysis suggests that FoCWE preferentially activates cell wall-mediated defence, and Fov has evolved virulence mechanisms to suppress FoCWE-induced defence. These findings suggest that FoCWE is a classical PAMP that is potentially recognised by a novel pattern-recognition receptor to regulate cotton resistance to Fusarium infections.


Asunto(s)
Arabidopsis , Fusarium , Pared Celular , Inmunidad , Enfermedades de las Plantas , Extractos Vegetales
3.
Plant Cell ; 32(12): 3978-4001, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037150

RESUMEN

Plant receptor-like kinases (RLKs) are important players in response to pathogen infections. Verticillium and Fusarium wilts, caused by Verticillium dahliae (Vd) and Fusarium oxysporum f. sp vasinfectum (Fov), respectively, are among the most devastating diseases in cotton (Gossypium spp). To understand the cotton response to these soil-borne fungal pathogens, we performed a genome-wide in silico characterization and functional screen of diverse RLKs for their involvement in cotton wilt diseases. We identified Gossypium hirsutum GhWAK7A, a wall-associated kinase, that positively regulates cotton response to both Vd and Fov infections. Chitin, the major constituent of the fungal cell wall, is perceived by lysin-motif-containing RLKs (LYKs/CERK1), leading to the activation of plant defense against fungal pathogens. A conserved chitin sensing and signaling system is present in cotton, including chitin-induced GhLYK5-GhCERK1 dimerization and phosphorylation, and contributes to cotton defense against Vd and Fov Importantly, GhWAK7A directly interacts with both GhLYK5 and GhCERK1 and promotes chitin-induced GhLYK5-GhCERK1 dimerization. GhWAK7A phosphorylates GhLYK5, which itself does not have kinase activity, but requires phosphorylation for its function. Consequently, GhWAK7A plays a crucial role in chitin-induced responses. Thus, our data reveal GhWAK7A as an important component in cotton response to fungal wilt pathogens by complexing with the chitin receptors.


Asunto(s)
Ascomicetos/fisiología , Fusarium/fisiología , Gossypium/enzimología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Transducción de Señal , Quitina/metabolismo , Resistencia a la Enfermedad , Gossypium/genética , Gossypium/microbiología , Interacciones Huésped-Patógeno , Fosforilación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética
4.
Phytopathology ; 110(3): 648-655, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31697198

RESUMEN

'Candidatus Liberibacter solanacearum' is a plant pathogen affecting the families Solanaceae and Apiaceae in different parts of the world. 'Ca. L. solanacearum' is a Gram-negative, fastidious α-proteobacterium that is vectored by different psyllid species. Plant-pathogenic bacteria are known for interfering with the host physiology or defense mechanisms, often by secreting bacterial effectors. Effector proteins are critical for virulence; therefore, the identification of effectors could help with disease management. In this study, we characterized the Sec-translocon-dependent 'Ca. L. solanacearum'-hypothetical protein effector 1 (Lso-HPE1). We compared this protein sequence in the different 'Ca. L. solanacearum' haplotypes. We predicted the signal peptide and validated its function using Escherichia coli's alkaline phosphatase fusion assay. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana demonstrated that Lso-HPE1 from 'Ca. L. solanacearum' haplotypes A and B were able to inhibit the induction of cell death in plants. We also compared gene expression of the Lso-HPE1- transcripts in 'Ca. L. solanacearum' haplotypes A and B in tomato and in the vector Bactericera cockerelli. This work validates the identification of a Sec-translocon-dependent 'Ca. L. solanacearum' protein possibly involved in suppression of plant cell death.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum lycopersicum , Animales , Enfermedades de las Plantas , Inmunidad de la Planta
5.
Curr Opin Plant Biol ; 50: 95-103, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31075542

RESUMEN

Bacterial blight of cotton, caused by Xanthomonas citri subsp. malvacearum, and Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum, contribute cotton losses worldwide. Resurgences of these diseases in the United States were reported in recent years. There is a pressing need to understand pathogenicity and host responses to the pathogens and develop effective strategies for disease prevention and management. Here, we discuss the current status of bacterial blight and Fusarium wilt of cotton in the field as well as the knowledge of cotton resistance and susceptibility to these pathogens. In addition, we aim to provide insights into how these diseases are recurring and possible methods to use current technologies for biological control of these pathogens.


Asunto(s)
Fusarium , Bacterias , Gossypium , Enfermedades de las Plantas
6.
7.
PLoS Genet ; 11(1): e1004936, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569773

RESUMEN

Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.


Asunto(s)
Arabidopsis/genética , Proteínas Activadoras de GTPasa/genética , Glicósido Hidrolasas/genética , Inmunidad de la Planta/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Glicósido Hidrolasas/metabolismo , Humanos , Motivos de Nucleótidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Plantones/genética , Plantones/virología
8.
Cell Host Microbe ; 16(6): 748-58, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25464831

RESUMEN

Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.


Asunto(s)
Arabidopsis/enzimología , ARN Polimerasa II/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Estructura Terciaria de Proteína , Pseudomonas syringae/fisiología , ARN Polimerasa II/química , ARN Polimerasa II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...