Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Microbiol ; 2021: 1978952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956368

RESUMEN

BACKGROUND: The aims of the current study are the identification of O157 and non-O157 Shiga Toxin-Producing Escherichia coli (STEC) serogroups isolated from fresh raw beef meat samples in an industrial slaughterhouse, determination of antimicrobial resistance patterns, and genetic linkage of STEC isolates. MATERIALS AND METHODS: A total of 110 beef samples were collected from the depth of the rump of cattle slaughtered at Hamadan industrial slaughterhouse. After detection of E. coli isolates, STEC strains were identified according to PCR for stx1, stx2, eaeA, and hlyA virulence genes, and STEC serogroups (O157 and non-O157) were identified by PCR. The genetic linkage of STEC isolates was analyzed by the ERIC- (Enterobacterial Repetitive Intergenic Consensus-) PCR method. The antimicrobial susceptibility of STEC isolates was detected by the disk diffusion method according to CLSI guidelines. RESULTS: Among 110 collected beef samples, 77 (70%) were positive for E. coli. The prevalence of STEC in E. coli isolates was 8 (10.4%). The overall prevalence of O157 and non-O157 STEC isolates was 12.5% (one isolate) and 87.5% (7 isolates), respectively. The hemolysin gene was detected in 25% (2 isolates) of STEC strains. Evaluation of antibiotic resistance indicated that 100% of STEC isolates were resistant to ampicillin, ampicillin-sulbactam, amoxicillin-clavulanic acid, and cefazolin. Resistance to tetracycline and ciprofloxacin was detected in 62.5% and 12.5% of isolates, respectively. The analysis of the ERIC-PCR results showed five different ERIC types among the STEC isolates. CONCLUSION: The isolation of different clones STECs from beef and the presence of antibiotic-resistant isolates indicate that more attention should be paid to the hygiene of slaughterhouses.

2.
Biomed Pharmacother ; 139: 111619, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33906079

RESUMEN

Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.


Asunto(s)
Anticarcinógenos/farmacología , Carcinogénesis/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Microbiota , Animales , Microbioma Gastrointestinal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...