Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 624: 114182, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33781755

RESUMEN

Introduction of magnetisable solid phase extraction procedures have provided various advantages over spin-column based extraction techniques. Although certain methods for magnetic bead based extraction of DNA from human saliva already exist, there is still a need to address the inadequate purity profile and low yield which occur due to the inefficiency of extraction methods. Hence, an improved method for DNA extraction from human saliva using uncoated magnetic nanoparticles (MNPs) intended to resolve the issues mentioned above is described here. The uncoated magnetic nanoparticles used in this study facilitate reversible binding of DNA and due to the absence of surface coating the particle size remains small thereby providing higher surface area to volume ratio for binding DNA. Another objective of this study was to develop a saliva preservation buffer (SPB) to solve the major challenges associated with storage and easy transportation of saliva sample at room temperature. Human saliva samples stored in the saliva preservation buffer were stable up to 160 days at room temperature without any bacterial or fungal growth and the quality of genomic DNA was intact.


Asunto(s)
ADN/aislamiento & purificación , Nanopartículas de Magnetita/química , Saliva/química , Extracción en Fase Sólida/métodos , Manejo de Especímenes/métodos , ADN/análisis , Genómica/métodos , Humanos , Indicadores y Reactivos , Reacción en Cadena de la Polimerasa/métodos , Temperatura , Factores de Tiempo
2.
3 Biotech ; 8(9): 404, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30221117

RESUMEN

In this study, polymethyl methacrylate (PMMA) thin films incorporated with biofabricated silver nanoparticles were used to evaluate the in vitro antimicrobial and antibiofilm activity against the cariogenic bacterium Streptococcus mutans. For this, silver nanoparticles (AgNPs) were generated using Bacillus amyloliquefaciens SJ14 culture (MAgNPs) and extract from Curcuma aromatica rhizome (CAgNPs). The AgNPs were further characterized by UV-Vis spectroscopy and high-resolution transmission electron microscopy. The minimum inhibitory concentration, minimum bactericidal concentration and antibiofilm activity of AgNPs against S. mutans were also assessed. Here, MAgNPs were found to have superior antimicrobial activity when compared to CAgNPs. The MAgNPs and CAgNPs also demonstrated 99% and 94% inhibition of biofilm formation of S. mutans at concentrations of 3 µg/mL and 50 µg/mL, respectively. The AgNPs were further incorporated into PMMA thin films using solvent casting method. The thin films were also characterized by scanning electron microscopy and UV-Vis spectroscopy. Subsequently, both PMMA/MAgNPs and PMMA/CAgNPs nanocomposite thin films were subjected to antimicrobial and antibiofilm analysis. The microbicidal activity was found to be higher for the PMMA/MAgNPs thin film, which highlights the potency of microbially synthesized AgNPs as excellent agents to inhibit cariogenic bacteria from colonising dental restorative material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...