Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1865(3): 184118, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621762

RESUMEN

Numerous pathophysiological conditions are associated with the misfolding and aggregation of proteins into insoluble amyloid fibrils. The mechanisms by which this process leads to cellular dysfunction remain elusive, though several hypotheses point toward the perturbation of the cell plasma membrane by pre-fibrillar intermediates and/or amyloid growth. However, current models to study membrane perturbations are largely limited to synthetic lipid vesicles and most of experimental approaches cannot be transposed to complex cell-derived plasma membrane systems. Herein, vesicles originating from the plasma membrane of erythrocytes and ß-pancreatic cells were used to study the perturbations induced by an amyloidogenic peptide, the islet amyloid polypeptide (IAPP). These biologically relevant lipid vesicles displayed a characteristic clustering in the presence of the amyloidogenic peptide, which was able to rupture membranes. By exploiting Förster resonance energy transfer (FRET), a rapid, simple, and potentially high-throughput assay to detect membrane perturbations of intact mammalian cell plasma membrane vesicles was implemented. The FRET kinetics of membrane perturbations closely correlated with the kinetics of thioflavin-T fluorescence associated with amyloid formation. This novel kinetics assay expands the toolbox available to study amyloid-associated membrane damage, bridging the gap between synthetic lipid vesicles and living cells.


Asunto(s)
Células Secretoras de Insulina , Membrana Dobles de Lípidos , Animales , Membrana Dobles de Lípidos/metabolismo , Fluorescencia , Membrana Celular/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Amiloide , Mamíferos
2.
Front Mol Biosci ; 9: 1017336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262476

RESUMEN

The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic ß-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20-29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12-17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12-17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.

3.
Biochemistry ; 60(29): 2285-2299, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34264642

RESUMEN

The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of ß-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into ß-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-ß-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic ß-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Lípidos de la Membrana/metabolismo , Alquilación , Amiloide/metabolismo , Animales , Línea Celular , Oxidación-Reducción , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica en Lámina beta , Procesamiento Proteico-Postraduccional , Ratas
4.
FASEB J ; 35(2): e21306, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33475205

RESUMEN

Glycosaminoglycans (GAGs) are long and unbranched anionic heteropolysaccharides that have been associated with virtually all amyloid deposits. Soluble sulfated GAGs are known for their propensity to promote the self-assembly of numerous amyloidogenic proteins and to modulate their cytotoxicity. Nonetheless, although GAGs are prevalent on the outer leaflet of eukaryotic cell plasma membrane as part of proteoglycans, their contributions in the perturbation of lipid bilayer induced by amyloid polypeptides remain unknown. Herein, we investigate the roles of GAGs in the cytotoxicity and plasma membrane perturbation induced by the islet amyloid polypeptide (IAPP), whose deposition in the pancreatic islets is associated with type II diabetes. Cellular assays using GAG-deficient cells reveal that GAGs exacerbate IAPP-induced cytotoxicity and permeabilization of the plasma membrane. Confocal microscopy and flow cytometry analyses show that IAPP sequestration at the cell surface is dependent of GAGs and of the aggregation propensity of the peptide. Using giant plasma membrane vesicles (GPMVs) prepared from GAG-deficient cells, we investigate the direct contributions of membrane-embedded proteoglycans in IAPP-induced membrane disassembly. In sharp contrast to soluble sulfated GAGs, kinetics of amyloid self-assembly expose that the presence of GAGs on GPMVs does not significantly modulate in vitro amyloid formation. Overall, this study indicates that cell surface GAGs increase the local concentration of IAPP in the vicinity of the plasma membrane, promoting lipid bilayer perturbation and cell death.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Amiloide/metabolismo , Animales , Células CHO , Cricetulus , Citometría de Flujo , Cinética , Membrana Dobles de Lípidos/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión
5.
Nanomaterials (Basel) ; 10(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036404

RESUMEN

Protein fibrils characterized with a cross-ß-sheet quaternary structure have gained interest as nanomaterials in biomedicine, including in the design of subunit vaccines. Recent studies have shown that by conjugating an antigenic determinant to a self-assembling ß-peptide, the resulting supramolecular assemblies act as an antigen delivery system that potentiates the epitope-specific immune response. In this study, we used a ten-mer self-assembling sequence (I10) derived from an amyloidogenic peptide to biophysically and immunologically characterize a nanofibril-based vaccine against the influenza virus. The highly conserved epitope from the ectodomain of the matrix protein 2 (M2e) was elongated at the N-terminus of I10 by solid phase peptide synthesis. The chimeric M2e-I10 peptide readily self-assembled into unbranched, long, and twisted fibrils with a diameter between five and eight nm. These cross-ß nanoassemblies were cytocompatible and activated the heterodimeric Toll-like receptor (TLR) 2/6. Upon mice subcutaneous immunization, M2e-fibrils triggered a robust anti-M2e specific immune response, which was dependent on self-assembly and did not require the use of an adjuvant. Overall, this study describes the efficacy of cross-ß fibrils to activate the TLR 2/6 and to stimulate the epitope-specific immune response, supporting usage of these proteinaceous assemblies as a self-adjuvanted delivery system for antigens.

6.
Immunobiology ; 225(4): 151962, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32747018

RESUMEN

By modulating specific immune responses against antigens, adjuvants are used in many vaccine preparations to enhance protective immunity. The C-terminal domain of the protein P97 (P97c) of Mycoplasma hyopneumoniae, which is the etiologic agent of porcine enzootic pneumonia, has been shown to increase the specific humoral response against an antigen when this antigen is merged with P97c and delivered by adenovectors. However, the immunostimulating mechanism of this protein remains unknown. In the present study, recombinantly expressed P97c triggered a concentration-dependent TLR5 activation and stimulates the production of interleukin-8 from HEK-Blue mTLR5 cells. Circular dichroism spectroscopy and prediction of 3-dimensional conformation exposed a relevant secondary and tertiary structural homology between P97c and flagellin, the known potent TLR5 agonist. P97c adjuvanticity was evaluated by fusing the conserved epitope of the ectodomain matrix 2 protein (M2e) of the influenza A virus to the protein. Mice immunized with P97c-3M2e revealed a high antibody titer against the M2e epitope associated with a mixed Th1/Th2 immune response. Overall, this study identifies a novel agonist of the pattern recognition receptor TLR5 and reveals that P97c is a potential adjuvant through the activation of the innate immune system.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mycoplasma hyopneumoniae/fisiología , Neumonía Porcina por Mycoplasma/metabolismo , Neumonía Porcina por Mycoplasma/microbiología , Receptor Toll-Like 5/metabolismo , Animales , Interacciones Huésped-Patógeno/inmunología , Inmunomodulación , Ratones , Neumonía Porcina por Mycoplasma/inmunología , Unión Proteica , Porcinos , Receptor Toll-Like 5/agonistas
7.
Proc Natl Acad Sci U S A ; 117(14): 7613-7621, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209666

RESUMEN

Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.


Asunto(s)
Bivalvos/metabolismo , Catecoles/metabolismo , Dihidroxifenilalanina/metabolismo , Secuencia de Aminoácidos , Animales , Catecoles/química , Oxidación-Reducción , Péptidos/química , Péptidos/metabolismo
8.
Small ; 15(33): e1901806, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31268238

RESUMEN

Peptides that self-assemble into cross-ß-sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self-assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N-terminus of a potent ß-sheet-forming sequence derived from the 20-29 segment of islet amyloid polypeptide, known to self-assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope-like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod-like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N-terminal positive charges hinder ß-sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.


Asunto(s)
Amiloide/química , Nanotubos/química , Electricidad Estática , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/química
9.
Nanoscale ; 10(41): 19547-19556, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30324958

RESUMEN

The design of nanoparticles exposing a high density of antigens constitutes a promising strategy to address safety concerns of conventional life-attenuated vaccines as well as to increase the immunogenicity of subunit vaccines. In this study, we developed a fully synthetic nanovaccine based on an amyloid peptide sequence with high self-assembling properties. The immunogenic epitope E2EP3 from the E2 glycoprotein of the Chikungunya virus was used to evaluate the potential of a 10-mer peptide derived from an endogenous amyloidogenic polypeptide as a novel vaccine platform. Chimeric peptides, comprising the peptide antigen attached to the amyloid core by a short flexible linker, were prepared by solid phase synthesis. As observed using atomic force microscopy, these polypeptides self-assembled into linear and unbranched fibrils with a diameter ranging from 6 to 8 nm. A quaternary conformation rich in cross-ß-sheets characterized these assemblies, as demonstrated by circular dichroism spectroscopy and thioflavin T fluorescence. ELISA assays and transmission electronic microscopy of immunogold labeled-fibrils revealed a high density of the Chikungunya virus E2 glycoprotein derived epitope exposed on the fibril surface. These amyloid fibrils were cytocompatible and were efficiently uptaken by macrophages. Mice immunization revealed a robust IgG response against the E2EP3 epitope, which was dependent on self-assembly and did not require co-injection of the Alhydrogel adjuvant. These results indicate that cross-ß-sheet amyloid assemblies constitute suitable synthetic self-adjuvanted assemblies to anchor antigenic determinants and to increase the immunogenicity of peptide epitopes.


Asunto(s)
Proteínas Amiloidogénicas/química , Fiebre Chikungunya/prevención & control , Virus Chikungunya/metabolismo , Epítopos/química , Nanopartículas/química , Vacunas Sintéticas/inmunología , Secuencia de Aminoácidos , Animales , Línea Celular , Fiebre Chikungunya/veterinaria , Fiebre Chikungunya/virología , Dicroismo Circular , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Inmunoglobulina G/sangre , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microscopía de Fuerza Atómica , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología , Estructura Secundaria de Proteína , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...