Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23364, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169786

RESUMEN

The cattle sector plays a pivotal role in the economies of numerous Latin American and Caribbean countries. However, it also exerts a significant impact on environmental degradation, including substantial contributions to greenhouse gas emissions (accounting for 23.5 % of global livestock emissions) and deforestation (70 % attributed to livestock in South America). This article aims to investigate the complex, long-term, and short-term relationships between population growth, pastureland expansion, deforestation, and the cattle sector in 15 countries across the region, focusing on their effects on greenhouse gas emissions as well as beef and dairy production. Utilizing data from FAOSTAT spanning the period from 1990 to 2019, a cointegrated panel model was developed using the Pooled Mean Group technique, resulting in the estimation of six models. The aggregate-level results for the region reveal the presence of relatively stable long-term relationships. This implies that over time, the influence of population growth, pastureland expansion, and deforestation on greenhouse gas emissions from cattle production tends to diminish in significance. This long-term behavior may be particularly pronounced in countries with more developed cattle sectors, where efforts to mitigate the environmental impacts of cattle production, such as promoting improved forage technologies, silvo-pastoral systems, grazing management practices, and the implementation of policies, regulatory frameworks, and incentives, have gained traction. These progressive countries can serve as regional benchmarks, and the lessons they have learned hold valuable insights for the sustainable intensification of cattle production in countries with less-developed cattle sectors.

2.
J Biol Chem ; 299(12): 105381, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866632

RESUMEN

Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Ubiquitinación , Ubiquitina/metabolismo
3.
Sci Immunol ; 7(68): eabi6112, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213210

RESUMEN

Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Innata/inmunología , Interleucina-2/inmunología , Linfocitos/inmunología , Animales , Células Asesinas Naturales/inmunología , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Vaccine ; 39(11): 1598-1608, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33612341

RESUMEN

BACKGROUND: Transplacentally transferred antibodies induced by maternal pertussis vaccination interfere with infant immune responses to pertussis primary vaccination. We evaluated whether this interference remains in toddlers after booster vaccination. METHODS: In a prior phase IV, observer-blind, placebo-controlled, randomized study (NCT02377349), pregnant women in Australia, Canada and Europe received intramuscular tetanus-reduced-antigen-content diphtheria-three-component acellular pertussis vaccine (Tdap group) or placebo (control group) at 270/7-366/7 weeks' gestation, with crossover immunization postpartum. Their infants were primed (study NCT02422264) and boosted (at 11-18 months; current study NCT02853929) with diphtheria-tetanus-three-component acellular pertussis-hepatitis B virus-inactivated poliovirus/Haemophilus influenzae type b vaccine (DTaP-HepB-IPV/Hib) and 13-valent pneumococcal conjugate vaccine. Immunogenicity before and after booster vaccination, and reactogenicity and safety of the booster were evaluated descriptively. RESULTS: 263 (Tdap group) and 277 (control group) toddlers received a DTaP-HepB-IPV/Hib booster. Pre-booster vaccination, observed geometric mean concentrations (GMCs) for the three pertussis antigens and diphtheria were 1.4-1.5-fold higher in controls than in the Tdap group. No differences were observed for the other DTaP-HepB-IPV/Hib antigens. One month post-booster vaccination, booster response rates for pertussis antigens were ≥ 92.1% and seroprotection rates for the other DTaP-HepB-IPV/Hib antigens were ≥ 99.2% in both groups (primary objective). Higher post-booster GMCs were observed in controls versus the Tdap group for anti-filamentous hemagglutinin (1.2-fold), anti-pertussis toxoid (1.5-fold) and anti-diphtheria (1.4-fold). GMCs for the other DTaP-HepB-IPV/Hib antigens were similar between groups. Serious adverse events were reported for three toddlers (controls, not vaccination-related). One death occurred pre-booster (Tdap group, not vaccination-related). CONCLUSIONS: As a consequence of interference of maternal pertussis antibodies with infant immune responses to pertussis primary vaccination, pertussis antibody concentrations were still lower in toddlers from Tdap-vaccinated mothers before DTaP-HepB-IPV/Hib booster vaccination. After the booster, antibody concentrations were lower for filamentous hemagglutinin and pertussis toxoid but not for pertactin. The clinical significance of this interference requires further evaluation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02853929.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Difteria , Vacunas contra Haemophilus , Tétanos , Tos Ferina , Anticuerpos Antibacterianos , Australia , Canadá , Preescolar , Difteria/prevención & control , Vacuna contra Difteria, Tétanos y Tos Ferina , Europa (Continente) , Femenino , Estudios de Seguimiento , Humanos , Inmunidad , Inmunización Secundaria , Lactante , Vacuna Antipolio de Virus Inactivados , Embarazo , Tétanos/prevención & control , Vacunación , Vacunas Combinadas , Tos Ferina/prevención & control
5.
Vaccine ; 38(8): 2105-2114, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31776027

RESUMEN

BACKGROUND: Pertussis immunization during pregnancy results in high pertussis antibody concentrations in young infants but may interfere with infant immune responses to post-natal immunization. METHODS: This phase IV, multi-country, open-label study assessed the immunogenicity and safety of infant primary vaccination with DTaP-HepB-IPV/Hib and 13-valent pneumococcal conjugate vaccine (PCV13). Enrolled infants (6-14 weeks old) were born to mothers who were randomized to receive reduced-antigen-content diphtheria-tetanus-three-component acellular pertussis vaccine (Tdap group) or placebo (control group) during pregnancy (270/7-366/7 weeks' gestation) with crossover immunization postpartum. All infants received 2 or 3 DTaP-HepB-IPV/Hib and PCV13 doses according to national schedules. Immunogenicity was assessed in infants pre- and 1 month post-primary vaccination. The primary objective was to assess seroprotection/vaccine response rates for DTaP-HepB-IPV/Hib antigens 1 month post-primary vaccination. RESULTS: 601 infants (Tdap group: 296; control group: 305) were vaccinated. One month post-priming, seroprotection rates were 100% (diphtheria; tetanus), ≥98.5% (hepatitis B), ≥95.9% (polio) and ≥94.5% (Hib) in both groups. Vaccine response rates for pertussis antigens were significantly lower in infants whose mothers received pregnancy Tdap (37.5-77.1%) versus placebo (90.0-99.2%). Solicited and unsolicited adverse event rates were similar between groups. Serious adverse events occurred in 2.4% (Tdap group) and 5.6% (control group) of infants, none were vaccination-related. CONCLUSIONS: Pertussis antibodies transferred during pregnancy may decrease the risk of pertussis infection in the first months of life but interfere with the infant's ability to produce pertussis antibodies, the clinical significance of which remains unknown. Safety and reactogenicity results were consistent with previous experience. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02422264.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Vacunas contra Haemophilus/inmunología , Vacunas contra Hepatitis B/inmunología , Vacunas Neumococicas/inmunología , Vacuna Antipolio de Virus Inactivados/inmunología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Embarazo , Vacunas Combinadas/inmunología
6.
Sci Transl Med ; 11(489)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019027

RESUMEN

The CD40/CD40L axis plays a central role in the generation of humoral immune responses and is an attractive target for treating autoimmune diseases in the clinic. Here, we report the generation and clinical results of a CD40L binding protein, VIB4920, which lacks an Fc domain, therefore avoiding platelet-related safety issues observed with earlier monoclonal antibody therapeutics that targeted CD40L. VIB4920 blocked downstream CD40 signaling events, resulting in inhibition of human B cell activation and plasma cell differentiation, and did not induce platelet aggregation in preclinical studies. In a phase 1 study in healthy volunteers, VIB4920 suppressed antigen-specific IgG in a dose-dependent fashion after priming and boosting with the T-dependent antigen, KLH. Furthermore, VIB4920 significantly reduced circulating Ki67+ dividing B cells, class-switched memory B cells, and a plasma cell gene signature after immunization. In a phase 1b proof-of-concept study in patients with rheumatoid arthritis, VIB4920 significantly decreased disease activity, achieving low disease activity or clinical remission in more than 50% of patients in the two higher-dose groups. Dose-dependent decreases in rheumatoid factor autoantibodies and Vectra DA biomarker score provide additional evidence that VIB4920 effectively blocked the CD40/CD40L pathway. VIB4920 demonstrated a good overall safety profile in both clinical studies. Together, these data demonstrate the potential of VIB4920 to significantly affect autoimmune disease and humoral immune activation and to support further evaluation of this molecule in inflammatory conditions.


Asunto(s)
Autoanticuerpos/metabolismo , Autoinmunidad/fisiología , Ligando de CD40/metabolismo , Proliferación Celular/fisiología , Agregación Plaquetaria/fisiología , Artritis Reumatoide/metabolismo , Linfocitos B/metabolismo , Antígenos CD40/metabolismo , Voluntarios Sanos , Humanos
7.
J Biol Chem ; 293(25): 9880-9891, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29720399

RESUMEN

4-1BBL is a member of the tumor necrosis factor (TNF) superfamily and is the ligand for the TNFR superfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells, and agonists of this receptor have garnered strong attention as potential immunotherapy agents. Broadly speaking, the structural features of TNF superfamily members, their receptors, and ligand-receptor complexes are similar. However, a published crystal structure of human 4-1BBL suggests that it may be unique in this regard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4-Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly.


Asunto(s)
Ligando 4-1BB/química , Ligando 4-1BB/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/química , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Multimerización de Proteína
8.
PDA J Pharm Sci Technol ; 71(2): 115-126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28289128

RESUMEN

The analysis and accurate quantitation of bioconjugations proves challenging in the case of oligomeric proteins, especially when the size of the molecule or the nature of the conjugate do not allow the analysis of the intact protein under native conditions. In this case, analytical methods are frequently applied that result in a dissociation of non-covalently linked subunits. This limits the analysis to a description of individual subunits, thereby obscuring the accurate characterization of the overall functionalization. This situation is frequently encountered in the biopharmaceutically important case of protein PEGylation, as the biophysical properties of the PEG polymer generally make analysis and accurate quantitation for a protein with multiple conjugation sites challenging under native conditions. In this work we present a statistical measure for deriving the overall functionalization of an oligomeric protein from the data obtained from readily accessible assays that cause non-covalently associated subunits to dissociate. This approach is broadly applicable for the characterization and optimization of bioconjugation reactions for multimeric biomolecules. It should also be highly valuable for the accurate description of composition and manufacturing consistency of conjugated biotherapeutics in regulatory filings.LAY ABSTRACT: Conjugated proteins are an important class of biopharmaceuticals. For these molecules, successful drug development requires accurate methods for the quantitative characterization of protein conjugation. This task is particularly challenging in the case of proteins consisting of several, non-covalently linked subunits, especially when the size of the protein or nature of the conjugate do not allow for analysis of the intact oligomeric molecule. Many of the analytical methods used to characterize these conjugates, such as reverse phase high-performance liquid chromatography, cause the individual subunits to dissociate, making it difficult to fully understand quality attributes at the native oligomeric level. We present a method to accurately quantify the overall conjugation of an oligomeric protein in these cases when readily available assays describe only individual subunits. This should be highly valuable for process optimization and to correctly characterize the conjugated biopharmaceutical in interactions with regulatory agencies.


Asunto(s)
Química Farmacéutica/métodos , Polietilenglicoles/química , Proteínas Recombinantes/química , Sitios de Unión , Química Farmacéutica/estadística & datos numéricos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Maleimidas/química , Modelos Estadísticos , Unión Proteica , Conformación Proteica
9.
J Pharm Sci ; 106(4): 1018-1024, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28063825

RESUMEN

This study explores the structural and functional changes associated with a low-temperature thermal transition of 2 engineered bacterial uricase mutants. Uricase has a noncovalent homotetrameric structure, with 4 active sites located at the interface of subunits. Using differential scanning calorimetry, a low-temperature transition was identified at 42°C for mutant A and at 33°C for mutant B. This transition was stabilized by the uricase inhibitor, oxonic acid, suggesting a strong structural relationship to the active site. For mutant B, there was a reversible loss of enzymatic activity above the low-temperature transition. Spectroscopic measurements demonstrated that there was also a reversible loss of secondary and tertiary structures and an increase in surface hydrophobicity. However, the hydrophobic core environment and the tetrameric structure were not altered over the low-temperature transition suggesting that the changes occurred primarily at the surface of the enzyme. The protein became aggregation-prone at temperatures approaching the cluster of higher-temperature melting transitions at 84°C, indicating these transitions represent a global unfolding of the protein. Our findings shed light on the structural changes that affect the uricase mechanism of action and provide new insights into how enzyme therapeutic development may be approached.


Asunto(s)
Arthrobacter/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Mutación/genética , Urato Oxidasa/química , Urato Oxidasa/genética , Arthrobacter/enzimología , Proteínas Bacterianas/metabolismo , Activación Enzimática/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Urato Oxidasa/metabolismo
10.
PLoS One ; 11(12): e0167935, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28002433

RESUMEN

Humans and higher primates are unique in that they lack uricase, the enzyme capable of oxidizing uric acid. As a consequence of this enzyme deficiency, humans have high serum uric acid levels. In some people, uric acid levels rise above the solubility limit resulting in crystallization in joints, acute inflammation in response to those crystals causes severe pain; a condition known as gout. Treatment for severe gout includes injection of non-human uricase to reduce serum uric acid levels. Krystexxa® is a hyper-PEGylated pig-baboon chimeric uricase indicated for chronic refractory gout that induces an immunogenic response in 91% of treated patients, including infusion reactions (26%) and anaphylaxis (6.5%). These properties limit its use and effectiveness. An innovative approach has been used to develop a therapeutic uricase with improved properties such as: soluble expression, neutral pH solubility, high E. coli expression level, thermal stability, and excellent activity. More than 200 diverse uricase sequences were aligned to guide protein engineering and reduce putative sequence liabilities. A single uricase lead candidate was identified, which showed low potential for immunogenicity in >200 human donor samples selected to represent diverse HLA haplotypes. Cysteines were engineered into the lead sequence for site specific PEGylation and studies demonstrated >95% PEGylation efficiency. PEGylated uricase retains enzymatic activity in vitro at neutral pH, in human serum and in vivo (rats and canines) and has an extended half-life. In canines, an 85% reduction in serum uric acid levels was observed with a single subcutaneous injection. This PEGylated, non-immunogenic uricase has the potential to provide meaningful benefits to patients with gout.


Asunto(s)
Gota/tratamiento farmacológico , Urato Oxidasa/uso terapéutico , Animales , Rastreo Diferencial de Calorimetría , Perros , Escherichia coli/metabolismo , Semivida , Humanos , Concentración de Iones de Hidrógeno , Cinética , Papio , Polietilenglicoles/química , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Especificidad por Sustrato , Porcinos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Urato Oxidasa/efectos adversos , Urato Oxidasa/inmunología
11.
MAbs ; 8(6): 1118-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27210548

RESUMEN

Fusion of proteins to the Fc region of IgG is widely used to express cellular receptors and other extracellular proteins, but cleavage of the fusion partner is sometimes required for downstream applications. Immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) is a protease with exquisite specificity for human IgG, and it can also cleave Fc-fusion proteins at a single site in the N-terminal region of the CH2 domain. However, the site of IdeS cleavage results in the disulfide-linked hinge region partitioning with the released protein, complicating downstream usage of the cleaved product. To tailor the Fc fragment for release of partner proteins by IdeS treatment, we investigated the effect of deleting regions of IgG-derived sequence that are upstream of the cleavage site. Elimination of the IgG-derived hinge sequence along with several residues of the CH2 domain had negligible effects on expression and purity of the fusion protein, while retaining efficient processing by IdeS. An optimal Fc fragment comprising residues 235-447 of the human IgG1 heavy chain sufficed for efficient production of fusion proteins and minimized the amount of residual Ig-derived sequence on the cleavage product following IdeS treatment. Pairing of this truncated Fc fragment with IdeS cleavage enables highly specific cleavage of Fc-fusion proteins, thus eliminating the need to engineer extraneous cleavage sequences. This system should be helpful for producing Fc-fusion proteins requiring downstream cleavage, particularly those that are sensitive to internal miscleavage if treated with alternative proteases.


Asunto(s)
Proteínas Bacterianas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Proteolisis , Proteínas Recombinantes de Fusión/química , Cromatografía en Gel , Cromatografía Liquida , Exones de la Región Bisagra , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Espectrometría de Masas , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato
12.
J Control Release ; 234: 104-14, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27212104

RESUMEN

Receptor clustering is important for signaling among the therapeutically relevant TNFR superfamily of receptors. In nature, this clustering is driven by trimeric ligands often presented in large numbers as cell surface proteins. Molecules capable of driving similar levels of clustering could make good agonists and hold therapeutic value. However, recapitulating such extensive clustering using typical biotherapeutic formats, such as antibodies, is difficult. Consequently, generating effective agonists of TNFR superfamily receptors is challenging. Toward addressing this challenge we have used lipid- and polyion complex-based micelles as platforms for presenting receptor-binding biologics in a multivalent format that facilitates receptor clustering and imparts strong agonist activity. We show that receptor-binding scFvs or small antibody mimetics that have no agonist activity on their own can be transformed into potent agonists through multivalent presentation on a micelle surface and that the activity of already active multivalent agonists can be enhanced. Using this strategy, we generated potent agonists against two different TNFR superfamily receptors and mouse tumor model studies demonstrate that these micellar agonists have therapeutic efficacy in vivo. Due to its ease of implementation and applicability independent of agonist molecular format, we anticipate that this strategy could be useful for developing agonists to a variety of receptors that rely on clustering to signal.


Asunto(s)
Antineoplásicos/administración & dosificación , Maleimidas/química , Nanopartículas/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Receptores del Factor de Necrosis Tumoral/agonistas , Anticuerpos de Cadena Única/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Células Jurkat , Ratones , Micelas , Unión Proteica , Anticuerpos de Cadena Única/química , Ensayos Antitumor por Modelo de Xenoinjerto
13.
MAbs ; 8(3): 501-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26852694

RESUMEN

The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.


Asunto(s)
Biblioteca de Péptidos , Ingeniería de Proteínas/métodos , Análisis de Secuencia de Proteína , Anticuerpos de Cadena Única , Animales , Ratones , Ratas , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/química
15.
Bioconjug Chem ; 25(1): 93-101, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24320725

RESUMEN

The conjugation of biomolecules by chemoselective oxime ligation is of great interest for the site-specific modification of proteins, peptides, nucleic acids, and carbohydrates. These conjugations proceed optimally at a reaction pH of 4-5, but some biomolecules are not soluble or stable under these conditions. Aniline can be used as a nucleophilic catalyst to enhance the rate of oxime formation, but even in its presence, the reaction rate at neutral pH can be slower than desired, particularly at low reagent concentrations and/or temperature. Recently, alternative catalysts with improved properties were reported, including anthranilic acid derivatives for small molecule ligations, as well as m-phenylenediamine at high concentrations for protein conjugations. Here, we report that p-substituted anilines containing an electron-donating ring substituent are superior catalysts of oxime-based conjugations at pH 7. One such catalyst, p-phenylenediamine, was studied in greater detail. This catalyst was highly effective at neutral pH, even at the low concentration of 2 mM. In a model oxime ligation using aminooxy-functionalized PEG, catalysis at pH 7 resulted in a 120-fold faster rate of protein PEGylation as compared to an uncatalyzed reaction, and 19-fold faster than the equivalent aniline-catalyzed reaction. p-Phenylenediamine (10 mM) was also an effective catalyst under acidic conditions and was more efficient than aniline throughout the pH range 4-7. This catalyst allows efficient oxime bioconjugations to proceed under mild conditions and low micromolar concentrations, as demonstrated by the PEGylation of a small protein.


Asunto(s)
Compuestos de Anilina/química , Oximas/síntesis química , Catálisis , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Oximas/química
16.
J Pharm Sci ; 102(11): 3920-4, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24105735

RESUMEN

Glycine-serine (GS) linkers are commonly used in recombinant proteins to connect domains. Here, we report the posttranslational O-glycosylation of a GS linker in a novel fusion protein. The structure of the O-glycan moiety is a xylose-based core substituted with hexose and sulfated hexauronic acid residues. The total level of O-xylosylation was approximately 30% in the material expressed in HEK-293 cell lines. There was an approximate 10-fold reduction in O-xylosylation levels when the material was expressed in Chinese hamster ovary cell lines. Similar O-glycan structures have been reported for human urinary thrombomodulin and represent the initial building block for proteoglycans such as chondroitin sulfate and heparin. The sites of attachment, determined by electron transfer dissociation mass spectrometry, were localized to serine in the linker regions of the recombinant fusion protein. This attachment could be attributed, in part, to the inherent xylosyltransferase motif present in GS linkers. Elimination of the O-glycan moiety was achieved with modified linkers containing only glycine residues. The aggregation and fragmentation behavior of the GGG construct were comparable to the GSG-linked material during thermal stress. The O-xylosylation reported has implications for the manufacturing consistency of recombinant proteins containing GS linkers.


Asunto(s)
Glicina/química , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Serina/química , Tenascina/metabolismo , Xilosa/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Secuencia de Carbohidratos , Cricetinae , Cricetulus , Glicina/metabolismo , Glicosilación , Humanos , Datos de Secuencia Molecular , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Serina/metabolismo , Tenascina/química , Xilosa/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-23989160

RESUMEN

Tn3 proteins are a novel class of binding molecules based on the third fibronectin type III domain of human tenascin C. Target-specific Tn3 proteins are selected from combinatorial libraries in which three surface-exposed loops have been diversified. Here, the cocrystallization of two different Tn3 proteins in complex with CD40L, a therapeutic target for immunological disease, is reported. These crystal structures are the first to be reported of Tn3 proteins and will help to reveal how these engineered molecules achieve specific recognition of a cognate target.


Asunto(s)
Ligando de CD40/química , Fibronectinas/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Ligando de CD40/genética , Ligando de CD40/aislamiento & purificación , Cristalografía por Rayos X , Escherichia coli/genética , Fibronectinas/genética , Expresión Génica , Humanos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/genética , Péptidos/aislamiento & purificación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
18.
Mol Cancer Ther ; 12(7): 1235-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23645592

RESUMEN

Activation of TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2) can induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in normal cells. The natural ligand and agonistic antibodies show antitumor activity in preclinical models of cancer, and this had led to significant excitement in the clinical potential of these agents. Unfortunately, this optimism has been tempered by trial data that, thus far, are not showing clear signs of efficacy in cancer patients. The reasons for discrepant preclinical and clinical observations are not understood, but one possibility is that the current TRAILR2 agonists lack sufficient potency to achieve a meaningful response in patients. Toward addressing that possibility, we have developed multivalent forms of a new binding scaffold (Tn3) that are superagonists of TRAILR2 and can induce apoptosis in tumor cell lines at subpicomolar concentrations. The monomer Tn3 unit was a fibronectin type III domain engineered for high-affinity TRAILR2 binding. Multivalent presentation of this basic unit induced cell death in TRAILR2-expressing cell lines. Optimization of binding affinity, molecular format, and valency contributed to cumulative enhancements of agonistic activity. An optimized multivalent agonist consisting of 8 tandem Tn3 repeats was highly potent in triggering cell death in TRAIL-sensitive cell lines and was 1 to 2 orders of magnitude more potent than TRAIL. Enhanced potency was also observed in vivo in a tumor xenograft setting. The TRAILR2 superagonists described here have the potential for superior clinical activity in settings insensitive to the current therapeutic agonists that target this pathway.


Asunto(s)
Neoplasias/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Células Hep G2 , Humanos , Células Jurkat , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Biochem J ; 451(2): 165-75, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384096

RESUMEN

Gene deletion studies in mice have revealed critical roles for IL (interleukin)-4 and -13 in asthma development, with the latter controlling lung airways resistance and mucus secretion. We have now developed human neutralizing monoclonal antibodies against human IL-13Rα1 (IL-13 receptor α1) subunit that prevent activation of the receptor complex by both IL-4 and IL-13. We describe the crystal structures of the Fab fragment of antibody 10G5H6 alone and in complex with D3 (ectodomain 3) of IL-13Rα1. Although the structure showed significant domain swapping within a D3 dimer, we showed that Arg(230), Phe(233), Tyr(250), Gln(252) and Leu(293) in each D3 monomer and Ser(32), Asn(102) and Trp(103) in 10G5H6 Fab are the key interacting residues at the interface of the 10G5H6 Fab-D3 complex. One of the most striking contacts is the insertion of the ligand-contacting residue Leu(293) of D3 into a deep pocket on the surface of 10G5H6 Fab, and this appears to be a central determinant of the high binding affinity and neutralizing activity of the antibody.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Epítopos , Subunidad alfa1 del Receptor de Interleucina-13/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Sitios de Unión/inmunología , Cristalografía por Rayos X , Dimerización , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Interleucina-13/inmunología , Interleucina-13/metabolismo , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Interleucina-4/inmunología , Interleucina-4/metabolismo , Leucina/metabolismo , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína
20.
Am J Respir Cell Mol Biol ; 39(6): 739-46, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18617680

RESUMEN

IL-11 and IL-11 receptor (R)alpha are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Ralpha, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Ralpha-null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Ralpha. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13-overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung.


Asunto(s)
Inflamación/metabolismo , Interleucina-11/metabolismo , Interleucina-13/metabolismo , Moco/metabolismo , Transducción de Señal , Células Th2/metabolismo , Alérgenos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Regulación de la Expresión Génica/efectos de los fármacos , Inmunización , Ratones , Ratones Endogámicos C57BL , Mucina 5AC/genética , Mucina 5AC/metabolismo , Ovalbúmina/inmunología , Fenotipo , Receptores de Interleucina-11/metabolismo , Transducción de Señal/efectos de los fármacos , Células Th2/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...