Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 617(7961): 608-615, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165185

RESUMEN

Peroxisomes are organelles that carry out ß-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.


Asunto(s)
Proteínas de la Membrana , Peroxinas , Peroxisomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxinas/química , Peroxinas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/química , Peroxisomas/metabolismo , Transición de Fase , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo
2.
J Psychiatry Neurosci ; 48(3): E209-E216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37253483

RESUMEN

Open science provides a compelling framework for accelerating global collaborations and enabling discoveries to understand and treat mental health disorders. Herein, we discuss the advantages and obstacles to adopting open science in mental health research, considering the particularities of sensitive and diverse data types, the potential of co-designing projects with research participants and the opportunity of amplifying open science by integration with mental health care. We present a practical example of how this landscape may be navigated to adopt open science across an entire research centre, in 5 steps, namely leadership committing to open science; finding models, resources and allies; identifying needs; defining open science principles; and putting principles into practice. We derive lessons learned that can be built upon by researchers and research organizations joining the open science movement in mental health.


Asunto(s)
Trastornos Mentales , Salud Mental , Humanos , Trastornos Mentales/terapia
3.
PLoS Biol ; 21(1): e3001949, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693044

RESUMEN

The state of open science needs to be monitored to track changes over time and identify areas to create interventions to drive improvements. In order to monitor open science practices, they first need to be well defined and operationalized. To reach consensus on what open science practices to monitor at biomedical research institutions, we conducted a modified 3-round Delphi study. Participants were research administrators, researchers, specialists in dedicated open science roles, and librarians. In rounds 1 and 2, participants completed an online survey evaluating a set of potential open science practices, and for round 3, we hosted two half-day virtual meetings to discuss and vote on items that had not reached consensus. Ultimately, participants reached consensus on 19 open science practices. This core set of open science practices will form the foundation for institutional dashboards and may also be of value for the development of policy, education, and interventions.


Asunto(s)
Investigación Biomédica , Humanos , Consenso , Técnica Delphi , Encuestas y Cuestionarios , Proyectos de Investigación
4.
Langmuir ; 39(1): 442-452, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576408

RESUMEN

The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.


Asunto(s)
Oxígeno Singlete , Liposomas Unilamelares , Liposomas Unilamelares/química , Peróxido de Hidrógeno , Antioxidantes/química , Lípidos/química
5.
Biochim Biophys Acta Biomembr ; 1861(4): 879-886, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716292

RESUMEN

The interactions between oxygen and lipid membranes play fundamental roles in basic biological processes (e.g., cellular respiration). Obviously, membrane oxidation is expected to be critically dependent on the distribution and concentration of oxygen in the membrane. Here, we combined theoretical and experimental methods to investigate oxygen partition and distribution in lipid membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a temperature range between 298 and 323 K, specifically focusing on the changes caused by the lipid phase and phase transition. Even though oxygen is known to be more concentrated in the center of fluid phase membranes than on the headgroup regions, the distribution profile of oxygen inside gel-phase bilayers remained to be determined. Molecular dynamics simulations now show that the distribution of oxygen inside DPPC bilayers dramatically changes upon crossing the main transition temperature, with oxygen being nearly depleted halfway from the headgroups to the membrane center below the transition temperature. In a parallel approach, singlet oxygen luminescence emission measurements employing the photosensitizer Pheophorbide-a (Pheo) confirmed the differences in oxygen distribution and concentration profiles between gel- and fluid-phase membranes, revealing changes in the microenvironment of the embedded photosensitizer. Our results also reveal that excited triplet state lifetime, as it can be determined from the singlet oxygen luminescence kinetics, is a useful probe to assess oxygen distribution in lipid membranes with distinct lipid compositions.


Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Químicos , Simulación de Dinámica Molecular , Oxígeno/química , Fosfatidilcolinas/química , Cinética
6.
Autophagy ; 15(2): 259-279, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30176156

RESUMEN

Cells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death. Specific damage to these organelles was induced by irradiation of cells pretreated with 2 phenothiazinium salts, methylene blue (MB) and 1,9-dimethyl methylene blue (DMMB). At a low concentration level (10 nM), only DMMB could induce mitochondrial damage, leading to mitophagy activation, which did not progress to completion because of the parallel damage in lysosome, triggering cell death. MB-induced photodamage was perceived almost instantaneously after irradiation, in response to a massive and nonspecific oxidative stress at a higher concentration range (2 µM). We showed that the parallel damage in mitochondria and lysosomes activates and inhibits mitophagy, leading to a late and more efficient cell death, offering significant advantage (2 orders of magnitude) over photosensitizers that cause unspecific oxidative stress. We are confident that this concept can be used to develop better light-activated drugs. Abbreviations: ΔΨm: mitochondrial transmembrane inner potential; AAU: autophagy arbitrary units; ATG5, autophagy related 5; ATG7: autophagy related 7; BAF: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CF: carboxyfluorescein; CTSB: cathepsin B; CVS: crystal violet staining; DCF: dichlorofluorescein; DCFH2: 2',7'-dichlorodihydrofluorescein; DMMB: 1,9-dimethyl methylene blue; ER: endoplasmic reticulum; HaCaT: non-malignant immortal keratinocyte cell line from adult human skin; HP: hydrogen peroxide; LC3B-II: microtubule associated protein 1 light chain 3 beta-II; LMP: lysosomal membrane permeabilization; LTG: LysoTracker™ Green DND-26; LTR: LysoTracker™ Red DND-99; 3-MA: 3-methyladenine; MB: methylene blue; mtDNA: mitochondrial DNA; MitoSOX™: red mitochondrial superoxide probe; MTDR: MitoTracker™ Deep Red FM; MTO: MitoTracker™ Orange CMTMRos; MT-ND1: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; 1O2: singlet oxygen; OH. hydroxil radical; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PBS: phosphate-buffered saline; PI: propidium iodide; PDT: photodynamic therapy; PS: photosensitizer; QPCR: gene-specific quantitative PCR-based; Rh123: rhodamine 123; ROS: reactive oxygen species RTN: rotenone; SQSTM1/p62: sequestosome 1; SUVs: small unilamellar vesicles; TBS: Tris-buffered saline.


Asunto(s)
Luz , Lisosomas/patología , Mitocondrias/patología , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Muerte Celular/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de la radiación , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Modelos Biológicos
7.
ACS Omega ; 4(26): 21636-21646, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891041

RESUMEN

Lipid oxidation encompasses chemical transformations affecting animals and plants in many ways, and light is one of the most common triggers of lipid oxidation in our habitat. Still, the molecular mechanisms and biological consequences of photoinduced lipid oxidation were only recently understood at the molecular level. In this review, we focus on the main mechanisms of photosensitized lipid oxidation and membrane permeabilization, dissecting the consequences of both singlet oxygen and contact-dependent pathways and discussing how these reactions contribute to chemical and biophysical changes in lipid membranes. We aim to enable scientists to develop novel and more efficient photosensitizers in photomedicine, as well as better strategies for sun protection.

8.
J Am Chem Soc ; 140(30): 9606-9615, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989809

RESUMEN

Although the general mechanisms of lipid oxidation are known, the chemical steps through which photosensitizers and light permeabilize lipid membranes are still poorly understood. Herein we characterized the products of lipid photooxidation and their effects on lipid bilayers, also giving insight into their formation pathways. Our experimental system was designed to allow two phenothiazinium-based photosensitizers (methylene blue, MB, and DO15) to deliver the same amount of singlet oxygen molecules per second to 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine liposome membranes, but with a substantial difference in terms of the extent of direct physical contact with lipid double bonds; that is, DO15 has a 27-times higher colocalization with ω-9 lipid double bonds than MB. Under this condition, DO15 permeabilizes membranes at least 1 order of magnitude more efficiently than MB, a result that was also valid for liposomes made of polyunsaturated lipids. Quantification of reaction products uncovered a mixture of phospholipid hydroperoxides, alcohols, ketones, and aldehydes. Although both photosensitizers allowed the formation of hydroperoxides, the oxidized products that require direct reactions between photosensitizer and lipids were more prevalent in liposomes oxidized by DO15. Membrane permeabilization was always connected with the presence of lipid aldehydes, which cause a substantial decrease in the Gibbs free energy barrier for water permeation. Processes depending on direct contact between photosensitizers and lipids were revealed to be essential for the progress of lipid oxidation and consequently for aldehyde formation, providing a molecular-level explanation of why membrane binding correlates so well with the cell-killing efficiency of photosensitizers.

9.
Biochim Biophys Acta Biomembr ; 1860(11): 2366-2373, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29886032

RESUMEN

The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/química , Fármacos Fotosensibilizantes/metabolismo , Difusión , Membrana Dobles de Lípidos/química , Azul de Metileno/química , Azul de Metileno/metabolismo , Microscopía de Contraste de Fase , Oxidación-Reducción , Permeabilidad , Fármacos Fotosensibilizantes/química
10.
Int J Mol Sci ; 16(9): 20523-59, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26334268

RESUMEN

Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.


Asunto(s)
Fotoquímica , Fotoquimioterapia , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Humanos , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
11.
Photochem Photobiol ; 90(4): 801-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24571440

RESUMEN

Structure-activity relationships have been widely reported for porphyrin and phthalocyanine photosensitizers, but not for phenothiazinium derivatives. Here, four phenothiazinium salts (methylene blue, toluidine blue O, 1,9-dimethyl methylene blue and the pentacyclic derivative DO15) were used to investigate how the ability to damage membranes is affected by membrane/solution partition, photophysical properties and tendency to aggregation of the photosensitizer. These two latter aspects were studied both in isotropic solutions and in membranes. Membrane damage was assessed by leakage of a fluorescent probe entrapped in liposomes and by generation of thiobarbituric acid-reactive species (TBARS), while structural changes at the lipid bilayer were detected by small-angle X-ray scattering. We observed that all compounds had similar singlet-oxygen quantum yields in ethanol, but only the photosensitizers that had higher membrane/solution partition (1,9-dimethyl methylene blue and DO15, the latter having the higher value) could permeabilize the lipid bilayer. Moreover, of these two photosensitizers, only DO15 altered membrane structure, a result that was attributed to its destabilization of higher order aggregates, generation of higher amounts of singlet oxygen within the membranes and effective electron-transfer reaction within its dimers. We concluded that membrane-based protocols can provide a better insight on the photodynamic efficiency of the photosensitizer.


Asunto(s)
Membranas Artificiales , Fenotiazinas/farmacología , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/farmacología , Lípidos , Liposomas , Estructura Molecular , Fenotiazinas/química , Fármacos Fotosensibilizantes/química , Relación Estructura-Actividad
12.
Biophys J ; 106(1): 162-71, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411248

RESUMEN

In this study we pursue a closer analysis of the photodamage promoted on giant unilamellar vesicles membranes made of dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), by irradiating methylene blue present in the giant unilamellar vesicles solution. By means of optical microscopy and electro-deformation experiments, the physical damage on the vesicle membrane was followed and the phospholipids oxidation was evaluated in terms of changes in the membrane surface area and permeability. As expected, oxidation modifies structural characteristics of the phospholipids that lead to remarkable membrane alterations. By comparing DOPC- with POPC-made membranes, we observed that the rate of pore formation and vesicle degradation as a function of methylene blue concentration follows a diffusion law in the case of DOPC and a linear variation in the case of POPC. We attributed this scenario to the nucleation process of oxidized species following a diffusion-limited growth regime for DOPC and in the case of POPC a homogeneous nucleation process. On the basis of these premises, we constructed models based on reaction-diffusion equations that fit well with the experimental data. This information shows that the outcome of the photosensitization reactions is critically dependent on the type of lipid present in the membrane.


Asunto(s)
Luz , Membrana Dobles de Lípidos/efectos de la radiación , Azul de Metileno/efectos de la radiación , Liposomas Unilamelares/efectos de la radiación , Membrana Dobles de Lípidos/química , Azul de Metileno/química , Oxidación-Reducción , Fosfatidilcolinas/química , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...