Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 2(3): 1, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24049716

RESUMEN

PURPOSE: We evaluated whether existing ultra-low vision tests are suitable for measuring outcomes using sensory substitution. The BrainPort is a vision assist device coupling a live video feed with an electrotactile tongue display, allowing a user to gain information about their surroundings. METHODS: We enrolled 30 adult subjects (age range 22-74) divided into two groups. Our blind group included 24 subjects (n = 16 males and n = 8 females, average age 50) with light perception or worse vision. Our control group consisted of six subjects (n = 3 males, n = 3 females, average age 43) with healthy ocular status. All subjects performed 11 computer-based psychophysical tests from three programs: Basic Assessment of Light Motion, Basic Assessment of Grating Acuity, and the Freiburg Vision Test as well as a modified Tangent Screen. Assessments were performed at baseline and again using the BrainPort after 15 hours of training. RESULTS: Most tests could be used with the BrainPort. Mean success scores increased for all of our tests except contrast sensitivity. Increases were statistically significant for tests of light perception (8.27 ± 3.95 SE), time resolution (61.4% ± 3.14 SE), light localization (44.57% ± 3.58 SE), grating orientation (70.27% ± 4.64 SE), and white Tumbling E on a black background (2.49 logMAR ± 0.39 SE). Motion tests were limited by BrainPort resolution. CONCLUSIONS: Tactile-based sensory substitution devices are amenable to psychophysical assessments of vision, even though traditional visual pathways are circumvented. TRANSLATIONAL RELEVANCE: This study is one of many that will need to be undertaken to achieve a common outcomes infrastructure for the field of artificial vision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA