Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 55(6): 2142-6, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26749264

RESUMEN

Plant-derived diterpenoids serve as important pharmaceuticals, food additives, and fragrances, yet their low natural abundance and high structural complexity limits their broader industrial utilization. By mimicking the modularity of diterpene biosynthesis in plants, we constructed 51 functional combinations of class I and II diterpene synthases, 41 of which are "new-to-nature". Stereoselective biosynthesis of over 50 diterpene skeletons was demonstrated, including natural variants and novel enantiomeric or diastereomeric counterparts. Scalable biotechnological production for four industrially relevant targets was accomplished in engineered strains of Saccharomyces cerevisiae.


Asunto(s)
Diterpenos/química , Diterpenos/metabolismo , Estructura Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
2.
Plant Physiol Biochem ; 96: 110-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26248039

RESUMEN

The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has been confirmed through generation of a targeted PpCPS/KS knock-out mutant in P. patens via homologous recombination, through transient expression of PpCPS/KS in Nicotiana benthamiana, and expression of PpCPS/KS in E. coli. GC-MS analysis of the knock-out mutant shows that it lacks the diterpenoids, supporting that all are products of PpCPS/KS as observed in N. benthamiana and E. coli. These results provide additional knowledge of the mechanism of this bifunctional diterpene synthase, and are in line with proposed reaction mechanisms in kaurene biosynthesis.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Bryopsida/metabolismo , Diterpenos/metabolismo , Organofosfatos/metabolismo , Proteínas de Plantas/metabolismo , Cromatografía de Gases y Espectrometría de Masas
3.
Methods Mol Biol ; 1153: 245-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24777803

RESUMEN

To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized to the native compartments, unlike microbial or prokaryotic expression systems. Two inherent drawbacks of plant-based expression systems, time-consuming generation of transgenic plant lines and challenging gene-stacking, can be circumvented by transient expression in Nicotiana benthamiana. In this chapter we describe an expression platform for rapid testing of candidate terpenoid biosynthetic genes based on Agrobacterium mediated gene expression in N. benthamiana leaves. Simultaneous expression of multiple genes is facilitated by co-infiltration of leaves with several engineered Agrobacterium strains, possibly making this the fastest and most convenient system for the assembly of plant terpenoid biosynthetic routes. Tools for cloning of expression plasmids, N. benthamiana culturing, Agrobacterium preparation, leaf infiltration, metabolite extraction, and automated GC-MS data mining are provided. With all steps optimized for high throughput, this in planta expression platform is particularly suited for testing large panels of candidate genes in all possible permutations.


Asunto(s)
Genes de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Terpenos/metabolismo , Agrobacterium/genética , ADN Bacteriano/genética , Minería de Datos , Expresión Génica , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plásmidos/genética , Terpenos/química , Nicotiana/crecimiento & desarrollo , Transformación Genética , Volatilización
4.
Methods Mol Biol ; 1153: 257-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24777804

RESUMEN

Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination.


Asunto(s)
Bryopsida/genética , Genes de Plantas/genética , Ingeniería Genética/métodos , Terpenos/metabolismo , Biolística , Reactores Biológicos , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Recombinación Homóloga , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Terpenos/química , Transformación Genética , Volatilización
5.
Plant Physiol ; 164(3): 1222-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24481136

RESUMEN

Forskolin, a complex labdane diterpenoid found in the root of Coleus forskohlii (Lamiaceae), has received attention for its broad range of pharmacological activities, yet the biosynthesis has not been elucidated. We detected forskolin in the root cork of C. forskohlii in a specialized cell type containing characteristic structures with histochemical properties consistent with oil bodies. Organelle purification and chemical analysis confirmed the localization of forskolin and of its simplest diterpene precursor backbone, (13R) manoyl oxide, to the oil bodies. The labdane diterpene backbone is typically synthesized by two successive reactions catalyzed by two distinct classes of diterpene synthases. We have recently described the identification of a small gene family of diterpene synthase candidates (CfTPSs) in C. forskohlii. Here, we report the functional characterization of four CfTPSs using in vitro and in planta assays. CfTPS2, which synthesizes the intermediate copal-8-ol diphosphate, in combination with CfTPS3 resulted in the stereospecific formation of (13R) manoyl oxide, while the combination of CfTPS1 and CfTPS3 or CfTPS4 led to formation of miltiradiene, precursor of abietane diterpenoids in C. forskohlii. Expression profiling and phylogenetic analysis of the CfTPS family further support the functional diversification and distinct roles of the individual diterpene synthases and the involvement of CfTPS1 to CfTPS4 in specialized metabolism and of CfTPS14 and CfTPS15 in general metabolism. Our findings pave the way toward the discovery of the remaining components of the pathway to forskolin, likely localized in this specialized cell type, and support a role of oil bodies as storage organelles for lipophilic bioactive metabolites.


Asunto(s)
Vías Biosintéticas , Coleus/citología , Coleus/metabolismo , Colforsina/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Abietanos/química , Abietanos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Biomasa , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Coleus/genética , Colforsina/química , Estructuras Citoplasmáticas/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Lípidos/química , Familia de Multigenes , Orgánulos/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Dispersión de Radiación
6.
Plant Physiol ; 162(2): 1073-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23613273

RESUMEN

Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Diterpenos/metabolismo , Biología Molecular/métodos , Plantas/genética , Plantas/metabolismo , Clonación Molecular , Minería de Datos , Bases de Datos Genéticas , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA