Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(3): 557-567.e4, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38232731

RESUMEN

The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.


Asunto(s)
Microbiota , Phaseolus , Domesticación , Fenotipo , Agricultura , Phaseolus/genética , Semillas/genética
2.
Sci Rep ; 13(1): 4279, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922543

RESUMEN

Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.


Asunto(s)
Poliaminas , Espermidina , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Pseudomonas syringae/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-35886428

RESUMEN

Background: Migraine with aura (MA) patients present an increased risk of cerebrovascular events. However, whether these patients present an increased white matter hyperintensities (WMHs) load compared to the general population is still under debate. Our study aimed to evaluate the relationship between cerebral hemodynamics, right-to-left shunt (RLS) and WMHs in MA patients, young patients with cryptogenic stroke or motor transient ischemic attack (TIA) and controls. Methods: We enrolled 30 MA patients, 20 young (<60 years) patients with cryptogenic stroke/motor TIA, and 10 controls. All the subjects underwent a transcranial Doppler bubble test to detect RLS and cerebral hemodynamics assessed by the breath holding index (BHI) for the middle (MCA) and posterior (PCA) cerebral arteries. Vascular risk factors were collected. The WMHs load on FLAIR MRI sequences was quantitatively assessed. Results: The stroke/TIA patients presented a higher prevalence of RLS (100%) compared with the other groups (p < 0.001). The MA patients presented a higher BHI compared with the other groups in the PCA (p = 0.010) and higher RLS prevalence (60%) than controls (30%) (p < 0.001). The WMHs load did not differ across groups. BHI and RLS were not correlated to the WMHs load in the groups. Conclusions: A preserved or more reactive cerebral hemodynamics and the presence of a RLS are likely not involved in the genesis of WMHs in MA patients. A higher BHI may counteract the risk related to their higher prevalence of RLS. These results need to be confirmed by further studies to be able to effectively identify the protective role of cerebral hemodynamics in the increased RLS frequency in MA patients.


Asunto(s)
Foramen Oval Permeable , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Trastornos Migrañosos , Migraña con Aura , Accidente Cerebrovascular , Sustancia Blanca , Foramen Oval Permeable/epidemiología , Hemodinámica , Humanos , Accidente Cerebrovascular/epidemiología , Ultrasonografía Doppler Transcraneal/métodos , Sustancia Blanca/diagnóstico por imagen
4.
Plant J ; 110(2): 452-469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35061924

RESUMEN

In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHOSPHATE2 (PHO2), or treatment with high phosphate (Pi) levels is accompanied by an increase in Pi content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g., miR399 overexpressors, pho2 mutants, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression levels of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways were higher in high Pi plants compared to wild-type plants grown under control conditions, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while pathogen infection induces PDF1.2 expression in miR399 OE and pho2 plants, VSP2 expression is downregulated by pathogen infection in these plants. This study supports the notion that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand interactions between Pi signaling and hormonal signaling pathways for modulation of plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Oxilipinas/metabolismo , Fosfatos/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Ácido Salicílico/metabolismo
5.
Environ Microbiol ; 23(4): 2070-2085, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33103833

RESUMEN

Bacterial bioluminescence is widely used to study the spatiotemporal dynamics of bacterial populations and gene expression in vivo at a population level but cannot easily be used to study bacterial activity at the level of individual cells. In this study, we describe the development of a new library of mini-Tn7-lux and lux::eyfp reporter constructs that provide a wide range of lux expression levels, and which combine the advantages of both bacterial bioluminescence and fluorescent proteins to bridge the gap between macro- and micro-scale imaging techniques. We demonstrate that a dual bioluminescence-fluorescence approach using the lux operon and eYFP can be used to monitor bacterial movement in plants both macro- and microscopically and demonstrate that Pseudomonas syringae pv phaseolicola can colonize the leaf vascular system and systemically infect leaves of common bean (Phaseolus vulgaris). We also show that bacterial bioluminescence can be used to study the impact of plant immune responses on bacterial multiplication, viability and spread within plant tissues. The constructs and approach described in this study can be used to study the spatiotemporal dynamics of bacterial colonization and to link population dynamics and cellular interactions in a wide range of biological contexts.


Asunto(s)
Phaseolus , Pseudomonas syringae , Fluorescencia , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas , Hojas de la Planta , Pseudomonas syringae/genética
6.
Biomolecules ; 10(4)2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344669

RESUMEN

RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.


Asunto(s)
Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Fotosíntesis , Dominios Proteicos , Proteínas de Unión al ARN/química , Reproducibilidad de los Resultados
7.
Mol Plant Pathol ; 21(4): 555-570, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32072745

RESUMEN

Phosphorus (P) is an essential nutrient for plant growth and productivity. Due to soil fixation, however, phosphorus availability in soil is rarely sufficient to sustain high crop yields. The overuse of fertilizers to circumvent the limited bioavailability of phosphate (Pi) has led to a scenario of excessive soil P in agricultural soils. Whereas adaptive responses to Pi deficiency have been deeply studied, less is known about how plants adapt to Pi excess and how Pi excess might affect disease resistance. We show that high Pi fertilization, and subsequent Pi accumulation, enhances susceptibility to infection by the fungal pathogen Magnaporthe oryzae in rice. This fungus is the causal agent of the blast disease, one of the most damaging diseases of cultivated rice worldwide. Equally, MIR399f overexpression causes an increase in Pi content in rice leaves, which results in enhanced susceptibility to M. oryzae. During pathogen infection, a weaker activation of defence-related genes occurs in rice plants over-accumulating Pi in leaves, which is in agreement with the phenotype of blast susceptibility observed in these plants. These data support that Pi, when in excess, compromises defence mechanisms in rice while demonstrating that miR399 functions as a negative regulator of rice immunity. The two signalling pathways, Pi signalling and defence signalling, must operate in a coordinated manner in controlling disease resistance. This information provides a basis to understand the molecular mechanisms involved in immunity in rice plants under high Pi fertilization, an aspect that should be considered in management of the rice blast disease.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/metabolismo , Oryza/microbiología , Fosfatos/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Enfermedades de las Plantas/microbiología
8.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799147

RESUMEN

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Asunto(s)
Células Epiteliales/virología , Perfilación de la Expresión Génica/métodos , ARN Viral/genética , Proteínas de Unión al ARN/genética , Virus Sindbis/genética , Transcriptoma , Neoplasias del Cuello Uterino/virología , Regiones no Traducidas 5' , Sitios de Unión , Células Epiteliales/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Virus Sindbis/crecimiento & desarrollo , Virus Sindbis/metabolismo , Virus Sindbis/patogenicidad , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Replicación Viral
9.
Methods Mol Biol ; 1734: 241-255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29288459

RESUMEN

Plant pathogens such as fungi, oomycetes, viruses and bacteria infect important crops and account for significant economic losses worldwide. Therefore, it is critical to gain insights into plant-pathogen interactions at the cellular and molecular level. The outcome of the interaction between plants and pathogens greatly differs depending on the species, strains and cultivars involved as well as environmental factors, yet typically results in stress for the plant, the pathogen or both. These biotic-induced stresses can be monitored using a wide range of techniques, of which some of the most commonly used techniques are outlined in this chapter. One widely observed feature of biotic stress in plants is the generation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2-). We describe the quantification of hydrogen peroxide by 3,3'-diaminobenzidine (DAB) staining and luminol-based assays, and of superoxide by nitroblue tetrazolium (NBT) staining. Other techniques detailed here include measurement of callose deposition by aniline blue staining, evaluation of cell death by trypan blue staining and analysis of the loss of membrane integrity by monitoring electrolyte leakage.


Asunto(s)
Interacciones Huésped-Patógeno , Plantas/metabolismo , Estrés Fisiológico , Electrólitos/metabolismo , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Nitroazul de Tetrazolio , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo
10.
Trends Plant Sci ; 22(6): 449-451, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28478905

RESUMEN

The application of RNA interactome capture to plants has enabled comprehensive determination of the plant RNA-binding proteome and the identification of novel families of RNA-binding proteins (RBPs). The technique is providing insight into the evolution of the eukaryotic repertoire of RBPs and will enhance prospects for engineering RBPs to improve crop traits.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Plantas/genética , Unión Proteica/genética , ARN de Planta , Proteínas de Unión al ARN/genética
11.
Plant J ; 90(2): 418-430, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28117509

RESUMEN

The proteasome is a nuclear-cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both ß1 and ß5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 [PtoDC3000(ΔhQ)] whilst the activity profile of the ß1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced ß1 and ß5 activities to strongly suppressed ß5 activities, revealing that ß1 and ß5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Infecciones Bacterianas/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Pseudomonas syringae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...