Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 106, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459571

RESUMEN

Tuberous sclerosis complex (TSC) is a rare inherited disease with the potential to affect virtually every organ system. Clinical presentation is age- and partly sex-dependent and varies broadly with respect to disease manifestations including treatment-refractory epilepsy, intellectual disability and TSC-associated neuropsychiatric disorders, chronic kidney disease or progressive lung function decline. Given the complexity of this disease, multidisciplinary care in specialized TSC centres is recommended. We aimed to elucidate the state of knowledge of patients/caregivers and physicians on individual disease manifestations. We further examined whether the association to a TSC centre has an impact on the comprehensive consideration of potential disease manifestations. Therefore, a survey was performed in a cohort of German TSC patients and their physicians. Complete information was available for 94 patients with a median age of 18 years [range 1-55] and a sex distribution of 53.2% (male): 48.8% (female). Using almost identical questionnaires for patients/caregivers and their respective physician, there was a good correlation for disease assessments associated with relevant morbidity and mortality like epilepsy, renal angiomyolipoma, cardiac rhabdomyomas or intellectual disability. Correlation was moderate for several neuropsychiatric disorders and only poor for hypomelanotic macules, dental pits or retinal achromic patches. Estimation of overall disease severity using a numeric rating scale correlated highly significantly (Pearson correlation coefficient = 0.767; p < 0.001) between patients/caregivers and physicians. In general, physicians more likely quoted items as 'unknown' than patients (822 answers vs. 435 answers in the respective groups). Questionnaires completed by physicians who were associated with a specialized TSC centre declared a significantly lower proportion of items as unknown (mean 8.7% vs. 20.5%; p < 0.001). These findings indicate that patients treated by specialized TSC centres seem to obtain a more comprehensive surveillance. Furthermore, it shows that there were reasonable surveillance strategies in general and sufficient patient/caregiver interaction and education in the examined cohort. However, for the most prominent disease characteristics there was a good awareness within both the patients/caregivers and the physicians group.


Asunto(s)
Angiomiolipoma , Discapacidad Intelectual , Neoplasias Renales , Médicos , Esclerosis Tuberosa , Humanos , Masculino , Femenino , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Angiomiolipoma/epidemiología , Esclerosis Tuberosa/complicaciones , Neoplasias Renales/complicaciones , Gravedad del Paciente
2.
J Periodontol ; 94(12): 1450-1460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37432945

RESUMEN

BACKGROUND: Prenyltrasferases (PTases) are a class of enzymes known to be responsible for promoting posttranslational modification at the carboxyl terminus of proteins containing a so-called CaaX-motif. The process is responsible for proper membrane localization and the appropriate function of several intracellular signaling proteins. Current research demonstrating the pathomechanistic importance of prenylation in inflammatory illnesses emphasizes the requirement to ascertain the differential expression of PT genes under inflammatory settings, particularly in periodontal disease. METHODS: Telomerase-immortalized human gingival fibroblasts (HGF-hTert) were cultured and treated with either inhibitors of prenylation (PTI) lonafarnib, tipifarnib, zoledronic acid, or atorvastatin at concentrations of 10 µM in combination with or without 10 µg Porphyromonas gingivalis lipopolysaccharide (LPS) for 24 h. Prenyltransferase genes FNTB, FNTA, PGGT1B, RABGGTA, RABGGTB, and PTAR1 as well as inflammatory marker genes MMP1 and IL1B were detected using quantitative real-time polymerase chain reaction (RT-qPCR). Immunoblot and protein immunoassay were used to confirm the results on the protein level. RESULTS: RT-qPCR experiments revealed significant upregulation of IL1B, MMP1, FNTA, and PGGT1B upon LPS treatment. PTase inhibitors caused significant downregulation of the inflammatory cytokine expression. Interestingly, FNTB expression was significantly upregulated in response to any PTase inhibitor in combination with LPS, but not upon LPS treatment only, indicating a vital role of protein farnesyltransferase in the proinflammatory signaling cascade. CONCLUSIONS: In this study, distinct PTase gene expression patterns in pro-inflammatory signaling were discovered. Moreover, PTase inhibiting drugs ameliorated inflammatory mediator expression by a significant margin, indicating that prenylation is a major pre-requisite for innate immunity in periodontal cells.


Asunto(s)
Dimetilaliltranstransferasa , Humanos , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Porphyromonas gingivalis/metabolismo , Prenilación , Fibroblastos/metabolismo , Expresión Génica , Encía/metabolismo , Células Cultivadas
3.
Biomed Pharmacother ; 164: 114915, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37236024

RESUMEN

Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.


Asunto(s)
Dimetilaliltranstransferasa , Prenilación de Proteína , Proteínas/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Terpenos , Prenilación
4.
J Glob Antimicrob Resist ; 32: 164-166, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36462736

RESUMEN

OBJECTIVES: The emergence of SARS-CoV-2 in 2019 led to a severe pandemic situation. Treatment options are limited, and the efficacy of vaccines decreases due to mutations in SARS-CoV-2 strains. Therefore, new treatment options are urgently needed, and computational compound screenings are used to predict drugs quickly. One of these screenings revealed farnesyltransferase inhibitors (FTIs) as potential candidates. METHODS: SARS-CoV-2 infected Calu-3 cells were treated with lonafarnib and tipifarnib and fold change viral replication of SARS-CoV-2 was measured using RT-qPCR. Furthermore, morphological changes, like CPE formation, were evaluated. Effects on Calu-3 cells were analyzed using MTT assay. RESULTS: We demonstrated that the FTIs lonafarnib and tipifarnib have an effect on SARS-CoV-2 Wildtype and the Delta variant. Both FTIs dose-dependently reduced morphological changes and the formation of cytopathic effects in SARS-CoV-2 infected Calu-3 cells. The effect of the FTIs on Omicron needs to be further elucidated because of inefficient viral replication. CONCLUSIONS: The FTI lonafarnib and tipifarnib might be effective drugs against different SARS-CoV-2 strains.


Asunto(s)
COVID-19 , Humanos , Farnesiltransferasa , SARS-CoV-2 , Inhibidores Enzimáticos
5.
Front Transplant ; 2: 1233322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38993912

RESUMEN

Objectives: Farnesyltransferase inhibitors (FTI), which inhibit the prenylation of Ras GTPases, were developed as anti-cancer drugs. As additional target proteins for prenylation were identified in the past, it is likely that FTI have potential value for therapeutic purposes beyond cancer. The effect of FTI on B-cells remains unclear. To address this issue, we investigated the effects of in vitro FTI treatment on effector and regulatory B-cells in healthy controls and renal transplant patients. Methods: For this purpose, B-cells were isolated from the peripheral blood of healthy controls and renal transplant patients. Purified B-cells were stimulated via Toll-like-receptor 9 (TLR-9) in the presence or absence of FTI. Regulatory functions, such as IL-10 and Granzyme B (GrB) secretion, were assessed by flow cytometry. In addition, effector B-cell functions, such as plasma cell formation and IgG secretion, were studied. Results: The two FTI Lonafarnib and tipifarnib both suppressed TLR-9-induced B-cell proliferation. Maturation of IL-10 producing B-cells was suppressed by FTI at high concentrations as well as induction of GrB-secreting B-cells. Plasma blast formation and IgG secretion were potently suppressed by FTI. Moreover, purified B-cells from immunosuppressed renal transplant patients were also susceptible to FTI-induced suppression of effector functions, evidenced by diminished IgG secretion. Conclusion: FTI suppress in vitro B-cell proliferation and plasma cell formation while partially preserving IL-10 as well as GrB production of B-cells. Thus, FTI may have immunosuppressive capacity encouraging further studies to investigate the potential immunomodulatory value of this agent.

6.
Front Chem ; 10: 967947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561140

RESUMEN

Manumycin A is postulated to be a specific inhibitor against the farnesyltransferase (FTase) since this effect has been shown in 1993 for yeast FTase. Since then, plenty of studies investigated Manumycin A in human cells as well as in model organisms like Caenorhabditis elegans. Some studies pointed to additional targets and pathways involved in Manumycin A effects like apoptosis. Therefore, these studies created doubt whether the main mechanism of action of Manumycin A is FTase inhibition. For some of these alternative targets half maximal inhibitory concentrations (IC50) of Manumycin A are available, but not for human and C. elegans FTase. So, we aimed to 1) characterize missing C. elegans FTase kinetics, 2) elucidate the IC50 and Ki values of Manumycin A on purified human and C. elegans FTase 3) investigate Manumycin A dependent expression of FTase and apoptosis genes in C. elegans. C. elegans FTase has its temperature optimum at 40°C with KM of 1.3 µM (farnesylpyrophosphate) and 1.7 µM (protein derivate). Whilst other targets are inhibitable by Manumycin A at the nanomolar level, we found that Manumycin A inhibits cell-free FTase in micromolar concentrations (Ki human 4.15 µM; Ki C. elegans 3.16 µM). Furthermore, our gene expression results correlate with other studies indicating that thioredoxin reductase 1 is the main target of Manumycin A. According to our results, the ability of Manumycin A to inhibit the FTase at the micromolar level is rather neglectable for its cellular effects, so we postulate that the classification as a specific FTase inhibitor is no longer valid.

7.
Cell Commun Signal ; 20(1): 118, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941619

RESUMEN

BACKGROUND: The CAAX-prenyltransferases farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) are heterodimers with a common α- (FTα) and unique ß-subunits. Recently, α-subunits of species (e.g., human) that harbour an N-terminal proline-rich region (PRR) showed different dimerization behaviours than α-subunits without PRR (e.g., yeast). However, the specific function of the PRR has not been elucidated so far. METHODS: To determine whether the PRR is a conserved motif throughout eukaryotes, we performed phylogenetics. Elucidating the impact of the PRR on enzyme properties, we cloned human as well as rat PRR deficient FTα, expressed them heterologously and compared protein-protein interaction by pull-down as well as crosslinking experiments. Substrate binding, enzyme activity and sensitivity towards common FTase inhibitors of full length and PRR-deletion α-subunits and their physiological partners was determined by continuous fluorescence assays. RESULTS: The PRR is highly conserved in mammals, with an exception for marsupials harbouring a poly-alanine region instead. The PRR shows similarities to canonical SH3-binding domains and to profilin-binding domains. Independent of the PRR, the α-subunits were able to dimerize with the different physiological ß-subunits in in vitro as well as in yeast two-hybrid experiments. FTase and GGTase I with truncated FTα were active. The KM values for both substrates are in the single-digit µM range and show no significant differences between enzymes with full length and PRR deficient α-subunits within the species. CONCLUSIONS: Our data demonstrate that an N-terminal PRR of FTα is highly conserved in mammals. We could show that the activity and inhibitability is not influenced by the truncation of the N-terminal region. Nevertheless, this region shows common binding motifs for other proteins involved in cell-signalling, trafficking and phosphorylation, suggesting that this PRR might have other or additional functions in mammals. Our results provide new starting points due to the relevant but only partly understood role of FTα in eukaryotic FTase and GGTase I. Video Abstract.


Asunto(s)
Dimetilaliltranstransferasa , Animales , Humanos , Mamíferos , Prolina , Prenilación de Proteína , Ratas , Saccharomyces cerevisiae , Especificidad por Sustrato
8.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 619-627, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35294605

RESUMEN

Diuretics are drugs that increase the flow of urine. They are commonly used to treat edema, hypertension, and heart failure. Typically, the pharmacological group consists of five classes: thiazide diuretics, loop diuretics, potassium-sparing diuretics, osmotic diuretics, and carbonic anhydrase inhibitors. This traditional classification and the nomenclature of diuretics have not changed over the last decades, which means that it was not adapted to current pharmacological research. Modern approaches in the field of pharmacological nomenclature suggest the introduction of mechanism-based drug class designations, which is not yet reflected in the group of diuretics. Moreover, included drug classes have lost their relevance as diuretic agents. Carbonic anhydrase inhibitors, for example, are mainly used in the treatment of glaucoma. Newer agents such as vasopressin-2 receptor antagonists or SGLT2 inhibitors possess diuretic properties but are not included in the pharmacological group. This review discusses the currentness of the pharmacological classification of diuretics. We elaborate changes in the field of nomenclature, the contemporary medical use of classical diuretics, and new diuretic agents.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Diuréticos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Hipertensión/tratamiento farmacológico , Inhibidores de los Simportadores del Cloruro de Sodio
9.
Cancers (Basel) ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35158735

RESUMEN

In breast cancer, the promising efficacy of farnesyltransferase inhibitors (FTIs) in preclinical studies is in contrast to only limited effects in clinical Phase II-III trials. The objective of this study was to explore the clinical relevance of farnesyltransferase ß-subunit (FNTB) single nucleotide promoter polymorphisms (FNTB-173 6G > 5G (rs3215788), -609 G > C (rs11623866) and -179 T > A (rs192403314)) in early breast cancer. FNTB genotyping was performed by pyrosequencing in 797 patients from a prospective multicentre observational PiA trial (NCT01592825). In the total cohort, the FNTB-173 6G > 5G polymorphism was an independent predictor of RFI (HR = 0.568; 95% CI = 0.339-0.949, p = 0.031), OS (HR = 0.629; 95% CI = 0.403-0.980, p = 0.040) and BCSS (HR = 0.433; 95% CI = 0.213-0.882; p = 0.021), whereas the FNTB-609 G > C polymorphism was an independent predictor of RFI (HR = 0.453; 95% CI = 0.226-0.910, p = 0.026) and BCSS (HR = 0.227; 95% CI = 0.075-0.687, p = 0.009). Subtype analysis revealed the independent prognostic relevance of FNTB promoter polymorphisms, particularly in TNBC but not in luminal or HER2-positive intrinsic subtypes. Finally, we used electrophoretic mobility shift assays (EMSAs) to confirm in vitro that the polymorphism FNTB-173 6G > 5G resulted in the differential binding of nuclear proteins from five different breast cancer cell lines. This is the first study on breast cancer suggesting that FNTB promoter polymorphisms (i) are independent prognostic biomarkers, particularly in patients with early TNBC, and (ii) could modulate FNTB's transcriptional activity.

10.
Genomics ; 114(2): 110314, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35167937

RESUMEN

Farnesyltransferase (FTase) enables about 100 proteins to interact with cellular membranes by catalyzing the posttranslational addition of a farnesyl group. Farnesylated proteins provide important functions and inhibitors against the ß-subunit of the heterodimer of FTase are intensively studied in clinical and preclinical trials. However, very little is known about the transcriptional regulation of the ß-subunit. The examined promoter region of the human FTase ß-subunit gene (FNTB) showed significant basal promoter activity in HEK-293 and in HeLa cells. We were able to locate the core promoter at -165 to -74. Ten potential binding sites of the transcription factor OCT-1 were detected. Three could be confirmed using EMSA super shift experiments. OCT-1 overexpression and knockdown confirmed it as an important regulator of FNTB expression. Our results provide a basis for further research on FNTB/OCT-1 regulation, its inhibitors and diseases influenced by both such as colon carcinoma or diabetes mellitus.


Asunto(s)
Transferasas Alquil y Aril , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas
11.
Clin Exp Dent Res ; 8(2): 473-484, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106960

RESUMEN

OBJECTIVE: To underline the necessity of adequate reference genes for real-time quantitative polymerase chain reaction (RT-qPCR) and evaluate a novel tool for condition-specific reference gene selection. BACKGROUND: RT-qPCR is a commonly used experimental technique that allows for highly sensitive analysis of gene transcription. Moreover, the use of internal reference genes as a means for relative quantification has rendered RT-qPCR a straightforward method for a variety of sciences, including dentistry. However, the expressional stability of internal reference genes must be evaluated for every assay in order to account for possible quantification bias. MATERIALS AND METHODS: Herein, we used the software tool RefGenes to identify putatively stable reference genes with the help of microarray datasets and evaluated them. Additionally, we propose an evidence-based workflow for adequate normalization of thusly identified genes. Human gingival fibroblasts (HGF-hTert), human acute leukemia-derived monocytes (THP-1), and telomerase immortalized gingival keratinocytes (TIGKs) were subjected to set-ups simulating various glycemic conditions and lipopolysaccharide challenges. Five common housekeeping genes (HKGs) and five genes from RefGenes were selected as targets and RT-qPCR was performed subsequently. Then, normalization algorithms Bestkeeper, Normfinder, and geNorm were used for further analysis of the putative reference gene stability. RESULTS: RefGenes-derived targets exhibited the highest stability values in THP-1 and TIGK cell lines. Moreover, unacceptable standard variations were observed for some common HKG like ß-actin. However, common HKG exhibited good stability values in HGF-hTert cells. CONCLUSION: The results indicate that microarray-based preselection of putative reference genes is a valuable refinement for RT-qPCR studies. Accordingly, the present study proposes a straightforward workflow for evidence-based preselection and validation of internal reference genes.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
12.
Front Microbiol ; 12: 628283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917041

RESUMEN

Farnesyltransferase inhibitors (FTIs) are focus for the treatment of several diseases, particularly in the field of cancer therapy. Their potential, however, goes even further, as a number of studies have evaluated FTIs for the treatment of infectious diseases such as malaria, African sleeping sickness, leishmaniosis, and hepatitis D virus infection. Little is known about protein prenylation mechanisms in human pathogens. However, disruption of IspA, a gene encoding the geranyltranstransferase of Staphylococcus aureus (S. aureus) leads to reprogramming of cellular behavior as well as impaired growth and decreased resistance to cell wall-targeting antibiotics. We used an agar well diffusion assay and a time kill assay and determined the minimum inhibitory concentrations of the FTIs lonafarnib and tipifarnib. Additionally, we conducted cell viability assays. We aimed to characterize the effect of these FTIs on S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (S. epidermidis), Escherichia coli (E. coli), Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and Streptococcus pneumoniae (S. pneumoniae). Both the FTIs lonafarnib and tipifarnib were capable of inhibiting the growth of the Gram-positive bacteria S. aureus, MRSA, S. epidermidis, and S. pneumoniae, whereas no effect was observed on Gram-negative bacteria. The analysis of the impact of lonafarnib and tipifarnib on common human pathogens might lead to novel insights into their defense mechanisms and therefore provide new therapeutic targets for antibiotic-resistant bacterial infections.

13.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576237

RESUMEN

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Asunto(s)
Antivirales/farmacología , Heparina/farmacología , Cloruro de Magnesio/farmacología , Aciclovir/farmacología , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/fisiología , Animales , Antivirales/química , Células CHO , Línea Celular Tumoral , Chlorocebus aethiops , Cricetulus , Evaluación Preclínica de Medicamentos , Fibroblastos , Heparina/química , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Humanos , Cloruro de Magnesio/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Cultivo Primario de Células , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Relación Estructura-Actividad , Células Vero , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
14.
Cancers (Basel) ; 13(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070677

RESUMEN

There is an unmet need for predictive biomarkers in metastatic renal cell carcinoma (mRCC) therapy. The phase IV MARC-2 trial searched for predictive blood biomarkers in patients with predominant clear cell mRCC who benefit from second-line treatment with everolimus. In an exploratory approach, potential biomarkers were assessed employing proteomics, ELISA, and polymorphism analyses. Lower levels of angiogenesis-related protein thrombospondin-2 (TSP-2) at baseline (≤665 parts per billion, ppb) identified therapy responders with longer median progression-free survival (PFS; ≤665 ppb at baseline: 6.9 months vs. 1.8, p = 0.005). Responders had higher lactate dehydrogenase (LDH) levels in serum two weeks after therapy initiation (>27.14 nmol/L), associated with a longer median PFS (3.8 months vs. 2.2, p = 0.013) and improved overall survival (OS; 31.0 months vs. 14.0 months, p < 0.001). Baseline TSP-2 levels had a stronger relation to PFS (HR 0.36, p = 0.008) than baseline patient parameters, including IMDC score. Increased serum LDH levels two weeks after therapy initiation were the best predictor for OS (HR 0.21, p < 0.001). mTOR polymorphisms appeared to be associated with therapy response but were not significant. Hence, we identified TSP-2 and LDH as promising predictive biomarkers for therapy response on everolimus after failure of one VEGF-targeted therapy in patients with clear cell mRCC.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1713-1725, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021798

RESUMEN

HMG-CoA-Reductase inhibitors (HMGRIs) are currently the most widely used group of drugs in patients with coronary artery disease (CAD) and are given preemptively to patients with high levels of cholesterol, including those with diabetes mellitus (DM). However, intake of HMGRIs also increases the progression of coronary artery calcification (CAC) and the risk of developing DM. This study aimed to investigate whether HMGRI intake interacts with the diabetes-associated genetic risk score (GRS) to affect CAC progression using data from the population-based Heinz Nixdorf Recall (HNR) study. CAC was measured in 3157 participants using electron-beam computed tomography twice, at baseline (CACb) and 5 years later (CAC5y). CAC progression was classified as slow, expected, or rapid based on predicted values. Weighted DM GRS was constructed using 100 diabetes mellitus-associated single nucleotide polymorphisms (SNPs). We used log-linear regression to evaluate the interaction of HMGRI intake with diabetes-associated GRS and individual SNPs on CAC progression (rapid vs. expected/slow), adjusting for age, sex, and log(CACb + 1). The prevalence of rapid CAC progression in the HNR study was 19.6%. We did not observe any association of the weighted diabetes mellitus GRS with the rapid progression of CAC (relative risk (RR) [95% confidence interval (95% CI)]: 1.01 [0.94; 1.10]). Furthermore, no indication of an interaction between GRS and HMGRI intake was observed (1.08 [0.83; 1.41]). Our analyses showed no indication that the impact of HMGRIs on CAC progression is significantly more severe in patients with a high genetic risk of developing DM than in those with a low GRS.


Asunto(s)
Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Calcificación Vascular/tratamiento farmacológico , Anciano , Enfermedad de la Arteria Coronaria/patología , Diabetes Mellitus Tipo 2/genética , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Farmacogenética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Tomografía Computarizada por Rayos X , Calcificación Vascular/patología
16.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801503

RESUMEN

Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Inhibidores Enzimáticos/farmacología , Fragmentos de Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas de Unión al GTP rap/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Humanos , Prenilación de Proteína , Especificidad por Sustrato , Xantinas/farmacología , Proteínas de Unión al GTP rap/química , Proteínas de Unión al GTP rap/genética
17.
Front Psychiatry ; 12: 768341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058817

RESUMEN

Introduction: During the first lockdown of the COVID-19 pandemic, several medical students volunteered as assistants in hospitals, public health departments, and other healthcare services to support and substitute permanent staff. The underlying motivations to help are unclear. Therefore, we aimed to assess medical students' motivations and influencing variables such as perceived stress and burden, compassion, and indicators of spirituality. Materials and Methods: Cross-sectional survey (convenience sample) from May to June 2020, directly after the first lockdown, among medical students with standardized instruments. One of them is the 12-item Motivations to Help Scale (MtHS) which was designed to fit to the population of medical students. Results: Among the 731 completers, 52% were working as volunteers during the pandemic in different medical areas, most in hospitals and only a few in other areas (9% in public health departments, 6% in outpatient services), 37% would have liked to work but did not get an appropriate employment, and 21% did not intend to voluntarily support the hospital staff. Their mental burden during work was rather low, while they were somewhat affected by the personal fate of the patients. With respect to their motivations to volunteer as measured with the MtHS, Altruistic Intentions/Helping (Cronbach's alpha = 0.898) scored highest, followed by Practical Application/Learning (Cronbach's alpha = 0.808), while Role Testing/Recognition (Cronbach's alpha = 0.702) scored lowest. Those who volunteered had significantly higher scores for Altruistic Intentions/Helping and Practical Application/Learning, while the different phases of medical study (preclinical phase, clinical phase, and higher semester) had no influence on the extent of the students' motivation. The motivations to help were not at all or only marginally (inversely) related to indicators of stress and burden, while Altruistic Intentions/Helping was weakly related to affections by patients' fate. Conclusions: Medical students' intention to support healthcare professionals as supplementary assistants were both prosocial and proself motivated. With this opportunity to practically apply their current knowledge and to improve their skills and competences, volunteering students might be more motivated for their further studies and their future career as compassionate medical doctors.

18.
Biospektrum (Heidelb) ; 26(7): 753-754, 2020.
Artículo en Alemán | MEDLINE | ID: mdl-33250579
19.
Biospektrum (Heidelb) ; 26(5): 516-517, 2020.
Artículo en Alemán | MEDLINE | ID: mdl-32921926
20.
Biospektrum (Heidelb) ; 26(4): 412-413, 2020.
Artículo en Alemán | MEDLINE | ID: mdl-32834538
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA