Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38795034

RESUMEN

The integration of transition metal dichalcogenides with photonic structures such as sol-gel SiOx:TiOy optical waveguides (WGs) makes possible the fabrication of photonic devices with the desired characteristics in the visible spectral range. In this study, we propose and experimentally demonstrate a MoS2-based photodetector integrated with a sol-gel SiOx:TiOy WG. Based on the spectroscopic measurements performed for our device, we concluded that the light entering the WG is almost completely channeled out from the WG and absorbed by the MoS2 flake, which is deposited on the WG. Therefore, this device works as a photodetector. The light coupling into the MoS2 region in this device construction is due to the high contrast of refractive index between the van der Waals crystal and the sol-gel WG, which is ∼4 and ∼1.8, respectively. The obtained MoS2-based photodetectors exhibit a photoresponsivity of 0.3 A W-1 (n-type MoS2) and 7.53 mA W-1 (p-type MoS2) at a bias voltage of 2 V. These results reveal great potential in the integration of sol-gel WGs with van der Waals crystals in optoelectronic applications.

2.
Nanotechnology ; 35(15)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38194713

RESUMEN

Synthesis of Mo2C bare MXenes, without surface terminations groups, via chemical vapor deposition (CVD) on metal foils is scientifically a very intriguing crystal growth process, and there are still challenges and limited fundamental understanding to overcome to obtain high yield and wide crystal size lateral growth. Achieving large area coverage via direct growth is scientifically vital to utilize the full potential of their unique properties in different applications. In this study, we sought to expand the boundaries of the current CVD growth approach for Mo2C MXenes and gain insights into the possibilities and limitations of large area growth, with a particular focus on controlling Mo concentration. We report a facile modification of their typical CVD growth protocol and show its influence on the Mo2C synthesis, with growth times spanning up to 3 h. Specifically, prior to initiating the CVD growth process, we introduced a holding step in temperature at 1095 °C. This proved to be beneficial in increasing the Mo concentration on the liquid Cu growth surface. We achieved an average Mo2C crystals coverage of approximately 50% of the growth substrate area, increased tendency of coalescence and merging of individual flakes, and lateral flake sizes up to 170µm wide. To gain deeper understanding into their CVD growth behavior, we conducted a systematic investigation of the effect of several factors, including (i) a holding step time on Mo diffusion rate through molten Cu, (ii) the Cu foil thickness over the Mo foil, and (iii) the CVD growth time. Phase, chemical and microstructural characterization by x-ray diffraction, x-ray photon spectroscopy, SEM and scanning/transmission electron microscopy revealed that the grown crystals are single phaseα-Mo2C. Furthermore, insights gained from this study sheds light on crucial factors and inherent limitations that are essential to consider and may help guide future research progress in CVD growth of bare MXenes.

3.
Sci Rep ; 13(1): 19114, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925524

RESUMEN

Monochalcogenides of groups III (GaS, GaSe) and VI (GeS, GeSe, SnS, and SnSe) are materials with interesting thickness-dependent characteristics, which have been applied in many areas. However, the stability of layered monochalcogenides (LMs) is a real problem in semiconductor devices that contain these materials. Therefore, it is an important issue that needs to be explored. This article presents a comprehensive study of the degradation mechanism in mechanically exfoliated monochalcogenides in ambient conditions using Raman and photoluminescence spectroscopy supported by structural methods. A higher stability (up to three weeks) was observed for GaS. The most reactive were Se-containing monochalcogenides. Surface protrusions appeared after the ambient exposure of GeSe was detected by scanning electron microscopy. In addition, the degradation of GeS and GeSe flakes was observed in the operando experiment in transmission electron microscopy. Additionally, the amorphization of the material progressed from the flake edges. The reported results and conclusions on the degradation of LMs are useful to understand surface oxidation, air stability, and to fabricate stable devices with monochalcogenides. The results indicate that LMs are more challenging for exfoliation and optical studies than transition metal dichalcogenides such as MoS2, MoSe2, WS2, or WSe2.

4.
Materials (Basel) ; 15(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363233

RESUMEN

Composite silica-titania waveguide films of refractive index ca. 1.8 are fabricated on glass substrates using a sol-gel method and dip-coating technique. Tetraethyl orthosilicate and tetraethyl orthotitanate with molar ratio 1:1 are precursors. Fabricated waveguides are annealed at 500 °C for 60 min. Their optical properties are studied using ellipsometry and UV-Vis spectrophotometry. Optical losses are determined using the streak method. The material structure and chemical composition, of the silica-titania films are analyzed using transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS), respectively. The surface morphology was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results presented in this work show that the waveguide films are amorphous, and their parameters are stable for over a 13 years. The optical losses depend on their thickness and light polarization. Their lowest values are less than 0.06 dB cm-1. The paper presents the results of theoretical analysis of scattering losses on nanocrystals and pores in the bulk and interfaces of the waveguide film. These results combined with experimental data clearly indicate that light scattering at the interface to a glass substrate is the main source of optical losses. Presented waveguide films are suitable for application in evanescent wave sensors.

5.
Materials (Basel) ; 15(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806715

RESUMEN

In the past few decades, several methods concerning optical thin films have been established to facilitate the development of integrated optics. This paper provides a brief depiction of different techniques for implementing optical waveguide thin films that involve chemical, physical, and refractive index modification methods. Recent advances in these fabrication methods are also been presented. Most of the methods developed for the realization of the thin-films are quite efficient, but they are expensive and require sophisticated equipment. The major interest of the scientists is to develop simple and cost-effective methods for mass production of optical thin films resulting in the effective commercialization of the waveguide technology. Our research group is focused on developing a silica-titania optical waveguide platform via the sol-gel dip-coating method and implementing active and passive optical elements via the wet etching method. We are also exploring the possibility of using nanoimprint lithography (NIL) for patterning these films so that the fabrication process is efficient and economical. The recent developments of this platform are discussed. We believe that silica-titania waveguide technology developed via the sol-gel dip-coating method is highly attractive and economical, such that it can be commercialized for applications such as sensing and optical interconnects.

6.
Small Methods ; 6(7): e2200449, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35587177

RESUMEN

Lithium-rich cathodes (LRCs) show great potential to improve the energy density of commercial lithium-ion batteries owing to their cationic and anionic redox characteristics. Herein, a complete conductive network using carbon nanotubes (CNTs) additives to improve the poor kinetics of LRCs is fabricated. Ex situ X-ray photoelectron spectroscopy first demonstrates that the slope at a low potential and the following long platform can be assigned to the transition metal and oxygen redox, respectively. The combination of galvanostatic intermittent titration technique and electrochemical impedance spectroscopy further reveal that a battery with CNTs exhibited accelerated kinetics, especially for the O-redox process. Consequently, LRCs with CNTs exhibit a much better rate and cycling performance (≈89% capacity retention at 2 C for over 200 cycles) than the Super P case. Eventually, TEM results imply that the improved electrochemical performance of the CNTs case also benefits from its more stable bulk and surface structures. Such a facile conductive additive modification strategy also provides a universal approach for the enhancement of the electron diffusion properties of other electrode materials.

7.
Small ; 18(15): e2107460, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35224838

RESUMEN

Although graphite materials with desirable comprehensive properties dominate the anode market of commercial lithium-ion batteries (LIBs), their low capacity during fast charging precludes further commercialization. In the present work, natural graphite (G) is reported not only to suffer from low capacity during fast charging, but also from charge failure after many charging cycles. Using different characterization techniques, severe graphite exfoliation, and continuously increasing solid electrolyte interphase (SEI) are demonstrated as reasons for the failure of G samples. An ultrathin artificial SEI is proposed, addressing these problems effectively and ensuring extremely stable operation of the graphite anode, with a capacity retention of ≈97.5% after 400 cycles at 1 C. Such an artificial SEI modification strategy provides a universal approach to tailoring and designing better anode materials for next-generation LIBs with high energy densities.

8.
Adv Mater ; 34(2): e2106400, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676927

RESUMEN

Single-crystal-to-single-crystal (SCSC) transformations have received considerable interest in crystal engineering, owing to providing a key platform for creating new materials. However, because of the limited tolerance of chemical bonds against the lattice strains, it is challenging to maintain the crystallinity when the structure changes dramatically. Here, a peculiar SCSC transformation from organic crystals to inorganic crystals, simultaneously achieving a drastic change in structure, connectivity, and dimension, is reported. As a demonstration, after reacting with liquid gallium, zeolitic imidazolate framework-8 (ZIF-8) can easily transform to 2D hydroxide single crystals. Interestingly, long-range ordered metallic atoms of hydroxide inherited from the ordered atomic arrangement of ZIF-8, but the connectivity is distinct. With good universality and extensibility, this transformation vastly expands the research scope of the SCSC transformations and provides a novel pathway for the synthesis of crystalline materials.

9.
Nanomicro Lett ; 13(1): 191, 2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510300

RESUMEN

The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.

10.
Adv Sci (Weinh) ; 8(20): e2100619, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34459155

RESUMEN

In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.

11.
Materials (Basel) ; 14(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201409

RESUMEN

The bromination of multi-walled carbon nanotubes (MWCNT) was performed with vapor bromine in a closed vessel, and they were subjected to intensive stirring with a magnetic stirrer for up to 14 days. The efficiency of bromination was compared depending upon duration. The structure and surface of the crude and purified products were characterized by detailed physicochemical analyses, such as SEM/EDS, TEM, XRD, TGA, Raman, and XPS spectroscopies. The studies confirmed the presence of bromine covalently bound with nanotubes as well as the formation of inclusion MWCNT-Br2 complexes. It was confirmed that Br2 molecules are absorbed on the surface of nanotubes (forming the CNT-Br2 complex), while they can dissociate close to dangling bonds at CNT defect sites with the formation of covalent C-Br bonds. Thus, any covalent attachment of bromine to the graphitic surface achieved around room temperature is likely related to the defects in the MWCNTs. The best results, i.e., the highest amount of attached Br2, were obtained for brominated nanotubes brominated for 10 days, with the content of covalently bound bromine being 0.68 at% (by XPS).

12.
Phys Chem Chem Phys ; 23(8): 4747-4756, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33599219

RESUMEN

Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C-N-C, [double bond, length as m-dash]NH or -NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.

13.
R Soc Open Sci ; 7(9): 200736, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047035

RESUMEN

A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5) n sol-gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.

14.
Adv Mater ; 32(45): e2002755, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32965054

RESUMEN

In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize.  It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale.

15.
Small ; 16(29): e2001484, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32529718

RESUMEN

2D intrinsic ferromagnetic materials are highly anticipated in spintronic devices due to their coveted 2D limited magnetism. However, 2D non-layered intrinsic ferromagnets have received sporadic attention, which is largely attributed to the fact that their synthesis is still a great challenge. Significantly, manganese phosphide (MnP) is a promising non-layered intrinsic ferromagnet with excellent properties. Herein, high-quality 2D MnP single crystals formed over liquid metal tin (Sn) is demonstrated through a facile chemical vapor deposition technique. The introduction of liquid metal Sn provides a fertile ground for the growth of 2D MnP single crystals. Interestingly, 2D MnP single crystals maintain their intrinsic ferromagnetism and exhibit a Curie temperature above room temperature. The research enriches the diversity of 2D intrinsic ferromagnetic materials, opening up opportunities for further exploration of their unique properties and rich applications.

16.
Small ; 16(5): e1907115, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31943829

RESUMEN

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2 Ti2 C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2 Ti2 C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2 Ti2 C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2 Ti2 C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials.

17.
Nano Converg ; 6(1): 14, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31065822

RESUMEN

Hybrid nanostructures, such as those with nanoparticles anchored on the surface of nanowires, or decorated nanowires, have a large number of potential and tested applications such as: gas sensing, catalysis, plasmonic waveguides, supercapacitors and more. The downside of these nanostructures is their production. Generally, multi-step synthesis procedures are used, with the nanowires and the nanoparticles typically produced separately and then integrated. The few existent single-step methods are lengthy or necessitate highly dedicated setups. In this paper we report a single-step and rapid (ca. 1 min) laser ablation synthesis method which produces a wide variety of boron-rich decorated nanowires. Furthermore, the method is carried at room temperature. The synthesis process consists on a filamentary jet ejection process driven by pressure gradients generated by the ablation plume on the rims of the irradiation crater. Simultaneously nanoparticles are nucleated and deposited on the filaments thus producing hybrid decorated nanowires.

18.
ACS Nano ; 13(2): 978-995, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30673226

RESUMEN

Investigations on monolayered transition metal dichalcogenides (TMDs) and TMD heterostructures have been steadily increasing over the past years due to their potential application in a wide variety of fields such as microelectronics, sensors, batteries, solar cells, and supercapacitors, among others. The present work focuses on the characterization of TMDs using transmission electron microscopy, which allows not only static atomic resolution but also investigations into the dynamic behavior of atoms within such materials. Herein, we present a body of recent research from the various techniques available in the transmission electron microscope to structurally and analytically characterize layered TMDs and briefly compare the advantages of TEM with other characterization techniques. Whereas both static and dynamic aspects are presented, special emphasis is given to studies on the electron-driven in situ dynamic aspects of these materials while under investigation in a transmission electron microscope. The collection of the presented results points to a future prospect where electron-driven nanomanipulation may be routinely used not only in the understanding of fundamental properties of TMDs but also in the electron beam engineering of nanocircuits and nanodevices.

19.
Adv Mater ; 31(9): e1800715, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29888408

RESUMEN

Modern aberration corrected transmission electron microscopes offer the potential for electron beam sensitive materials, such as graphene, to be examined with low energy electrons to minimize, and even avoid, damage while still affording atomic resolution, and thus providing excellent characterization. Here in this review, the exploits in which the electron beam interactions, which are often considered negative, are explored to usefully drive a wealth of chemistry in and around graphene, importantly, with no other external stimuli. After introducing the technique, this review covers carbon phase reactions between amorphous carbon, graphene, fullerenes, carbon chains, and carbon nanotubes. It then explores different studies with clusters and nanoparticles, followed by coverage of single atom and molecule interactions with graphene, and finally concludes and highlights the anticipated exciting future for electron beam driving chemistry in and around graphene.

20.
Chem Soc Rev ; 48(1): 72-133, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30387794

RESUMEN

Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX. Since then, material scientists have either determined or predicted the stable phases of >200 different MXenes based on combinations of various transition metals such as Ti, Mo, V, Cr, and their alloys with C and N. Extensive experimental and theoretical studies have shown their exciting potential for energy conversion and electrochemical storage. To this end, we comprehensively summarize the current advances in MXene research. We begin by reviewing the structure types and morphologies and their fabrication routes. The review then discusses the mechanical, electrical, optical, and electrochemical properties of MXenes. The focus then turns to their exciting potential in energy storage and conversion. Energy storage applications include electrodes in rechargeable lithium- and sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. In terms of energy conversion, photocatalytic fuel production, such as hydrogen evolution from water splitting, and carbon dioxide reduction are presented. The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is also addressed, along with their promise as catalysts for ammonium synthesis from nitrogen. Finally, their application potential is summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...