Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomolecules ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786004

RESUMEN

Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein-protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Péptidos , Proteína 2 Ligando de Muerte Celular Programada 1 , Receptor de Muerte Celular Programada 1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Péptidos/química , Péptidos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/antagonistas & inhibidores , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Unión Proteica , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Sitios de Unión , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
2.
J Am Heart Assoc ; 10(1): e016696, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33327730

RESUMEN

Background Expression of receptor for advanced glycation end products (RAGE) plays an important role in diabetic peripheral artery disease. We proposed to show that treatment with an antibody blocking RAGE would improve hind limb perfusion and muscle viability in diabetic pig with femoral artery (FA) ligation. Methods and Results Purpose-bred diabetic Yucatan minipigs with average fasting blood sugar of 357 mg/dL on insulin to maintain a glucose range of 300 to 500 mg/dL were treated with either a humanized monoclonal anti-RAGE antibody (CR-3) or nonimmune IgG. All pigs underwent intravascular occlusion of the anterior FA. Animals underwent (201Tl) single-photon emission computed tomography/x-ray computed tomography imaging on days 1 and 28 after FA occlusion, angiogenesis imaging with [99mTc]dodecane tetra-acetic acid-polyethylene glycol-single chain vascular endothelial growth factor (scVEGF), muscle biopsies on day 7, and contrast angiogram day 28. Results showed greater increases in perfusion to the gastrocnemius from day 1 to day 28 in CR-3 compared with IgG treated pigs (P=0.0024), greater uptake of [99mTc]dodecane tetra-acetic acid-polyethylene glycol-scVEGF (scV/Tc) in the proximal gastrocnemius at day 7, confirmed by tissue staining for capillaries and vascular endothelial growth factor A, and less muscle loss and fibrosis at day 28. Contrast angiograms showed better reconstitution of the distal FA from collaterals in the CR-3 versus IgG treated diabetic pigs (P=0.01). The gastrocnemius on nonoccluded limb at necropsy had higher 201Tl uptake (percentage injected dose per gram) and reduced RAGE staining in arterioles in CR-3 treated compared with IgG treated animals (P=0.04). Conclusions A novel RAGE-blocking antibody improved hind limb perfusion and angiogenesis in diabetic pigs with FA occlusion. Contributing factors are increased collaterals and reduced vascular RAGE expression. CR-3 shows promise for clinical treatment in diabetic peripheral artery disease.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Anticuerpos Monoclonales/farmacología , Angiopatías Diabéticas , Enfermedad Arterial Periférica , Receptor para Productos Finales de Glicación Avanzada , Angiografía/métodos , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/metabolismo , Descubrimiento de Drogas/métodos , Productos Finales de Glicación Avanzada/metabolismo , Miembro Posterior/irrigación sanguínea , Músculo Esquelético/irrigación sanguínea , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/etiología , Enfermedad Arterial Periférica/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/inmunología , Porcinos , Porcinos Enanos , Resultado del Tratamiento
3.
Mol Imaging Biol ; 23(3): 340-349, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33156495

RESUMEN

PURPOSE: Metastatic breast cancer is the second leading cause of cancer-related death in women. The 5-year survival rate for metastatic breast cancer has remained near 26.9 % for over a decade. The recruitment of hematopoietic stem cells with high expression of the vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in early stages of metastasis formation. We propose the use of an 18F-labeled single-chain version of VEGF121, re-engineered to be selective for VEGFR-1 (scVR1), as a positron emission tomography (PET) imaging agent to non-invasively image early-stage metastases. PROCEDURES: scVR1 was 18F-labeled via a biorthogonal click reaction between site-specifically trans-cyclooctene functionalized scVR1 and an Al18F labeled tetrazine-NODA (1,4,7-triazacyclononane-1,4-diiacetic acid). The [18F]AlF-NODA-scVR1 was purified using a PD10 column and subsequently analyzed on HPLC to determine radiochemical purity. Animal experiments were performed in 6-8-week-old female BALB/c mice bearing orthotopic primary 4T1 breast tumors or 4T1 metastatic lesions. The [18F]AlF-NODA-scVR1 tracer was administered via tail vein injection; PET imaging and ex vivo analysis was performed 2 h post-injection. RESULTS: The [18F]AlF-NODA-scVR1 was prepared with a 98.2 ± 1.5 % radiochemical purity and an apparent molar activity of 7.5 ± 1.2 GBq/µmol. The specific binding of scVR1 to VEGFR-1 was confirmed via bead-based assay. The ex vivo biodistribution showed tumor uptake of 3.5 ± 0.5 % ID/g and was readily observable in PET images. Metastasis formation was detected with [18F]AlF-NODA-scVR1 tracer showing colocalization with bioluminescent imaging as well as ex vivo autoradiography and immunofluorescent staining of VEGFR-1. CONCLUSIONS: The diagnostic capabilities of the [18F]AlF-NODA-scVR1 PET tracer was confirmed in both orthotopic and metastatic murine cancer models. These results support the potential use of [18F]AlF-NODA-scVR1 as a PET tracer that could image metastases, providing clinicians with an additional tool to assess a patient's need for adjuvant therapies.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Radioisótopos de Flúor/química , Células Madre Hematopoyéticas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Mutación , Metástasis de la Neoplasia , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Tomografía de Emisión de Positrones
4.
EJNMMI Res ; 10(1): 48, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32399850

RESUMEN

BACKGROUND: New therapies to treat diabetic peripheral artery disease (PAD) require target-specific non-invasive imaging modalities to follow efficacy. As a translational study, we performed targeted imaging of receptors for vascular endothelial growth factor (VEGF) in response to anterior femoral artery occlusion (FAO) in Yucatan minipigs and compare the normal response to response in diabetic Yucatan minipigs. METHODS: Eleven Yucatan minipigs, 6 non-diabetic (non-D) and 5 purpose bred diabetic (D) (Sinclair, Auxvasse MO), underwent intravascular total occlusion of the anterior femoral artery (FA). At days 1 and 28, pigs underwent SPECT/CT 201Tl hindlimb perfusion imaging and at day 7 were injected with [99mTc]DOTA-PEG-scVEGF (scV/Tc) tracer targeting VEGF receptor, and underwent biopsies of the hindlimb muscles for gamma counting and histology, followed by imaging. One day after the final scan, pigs underwent contrast angiography of the lower extremities. Counts from scans were converted to percentage injected activity (%IA). RESULTS: Perfusion was lower in the occluded hindlimb compared to non-occluded on day 1 in both the D and non-D pigs. At day 7, scV/Tc count ratio of counts from ROIs drawn in proximal gastrocnemius muscle for the occluded over non-occluded limb was significantly higher in non-D vs. D pigs (1.32 ± 0.06 vs. 1.04 ± 0.13, P = 0.02) reflecting higher level of angiogenesis. Perfusion increased between days 1 and 28 in the muscles in the occluded limb for the non-diabetic pigs while the diabetic pig showed no increase (+ 0.13 ± 0.08 %IA vs. - 0.13 ± 0.11, P = 0.003). The anterior FA showed poor contrast filling beyond occluder and qualitatively fewer bridging collaterals compared to non-D pigs at 28 days. CONCLUSION: VEGF receptor targeted imaging showed the effects of diabetes to suppress angiogenesis in response to occlusion of the anterior femoral artery of purpose bred diabetic Yucatan minipigs and indicates potential applicability as a marker to follow efficacy of novel therapies to improve blood flow by stimulating angiogenesis in diabetic PAD.

5.
Bioconjug Chem ; 30(3): 604-613, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30633508

RESUMEN

The increased expression of vascular endothelial growth factor (VEGF) and its receptors is associated with angiogenesis in a growing tumor, presenting potential targets for tumor-selective imaging by way of targeted tracers. Though fluorescent tracers are used for targeted in vivo imaging, the lack of photostability and biocompatibility of many current fluorophores hinder their use in several applications involving long-term, continuous imaging. To address these problems, fluorescent nanodiamonds (FNDs), which exhibit infinite photostability and excellent biocompatibility, were explored as fluorophores in tracers for targeting VEGF receptors in growing tumors. To explore FND utility for imaging tumor VEGF receptors, we used click-chemistry to conjugate multiple copies of an engineered single-chain version of VEGF site-specifically derivatized with trans-cyclooctene (scVEGF-TCO) to 140 nm FND. The resulting targeting conjugates, FND-scVEGF, were then tested for functional activity of the scVEGF moieties through biochemical and tissue culture experiments and for selective tumor uptake in Balb/c mice with induced 4T1 carcinoma. We found that FND-scVEGF conjugates retain high affinity to VEGF receptors in cell culture experiments and observed preferential accumulation of FND-scVEGF in tumors relative to untargeted FND. Microspectroscopy provided unambiguous determination of FND within tissue by way of the unique spectral shape of nitrogen-vacancy induced fluorescence. These results validate and invite the use of targeted FND for diagnostic imaging and encourage further optimization of FND for fluorescence brightness.


Asunto(s)
Colorantes Fluorescentes/química , Nanodiamantes/química , Neoplasias/diagnóstico por imagen , Receptores de Factores de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/química , Animales , Química Clic , Femenino , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Imagen Óptica/métodos
6.
Mol Imaging Biol ; 20(6): 963-972, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29687324

RESUMEN

PURPOSE: To compare targeted imaging of vascular endothelial growth factor (VEGF) receptors vs. αvß3 integrins in a mouse hindlimb ischemia model of peripheral artery disease. PROCEDURES: Male wild-type (WT) C57BL/6 mice (8- to 10-week old) (n = 24) underwent left femoral artery ligation. The right leg served as control. Five days later, mice were injected with either VEGF receptor targeting [99mTc]DOTA-PEG-scVEGF ([99mTc]scV) (n = 8) or with αvß3-targeting tracer [99mTc]HYNIC-cycloRGD ([99mTc]RGD) (n = 8) and underwent single photon emission computed tomography (SPECT) x-ray computed tomography imaging. To assess non-specific [99mTc]scV uptake, six additional mice received a mixture of [99mTc]scV and 30-fold excess of targeting protein, scVEGF. Tracer uptake as %ID was measured using volumetric regions encompassing the hindlimb muscles and as %ID/g from harvested limb muscles. Double and triple immunofluorescent analysis on tissue sections established localization of αvß3, VEGFR-1, VEGFR-2, as well as certain cell lineage markers. RESULTS: Tracer uptake, as %ID/g, was higher in ligated limbs of mice injected with [99mTc]scV compared to ligated hindlimbs in mice injected with [99mTc]RGD (p = 0.02). The ratio of tracer uptake for ligated/control hindlimb was borderline higher for [99mTc]scV than for [99mTc]RGD (p = 0.06). Immunofluorescent analysis showed higher prevalence of VEGFR-1, VEGFR-2, and αvß3, in damaged vs. undamaged hindlimb tissue, but with little co-localization of these markers. Double immunofluorescent staining showed partial co-localization of VEGFR-1, VEGFR-2, and αvß3, with endothelial cell marker FVIII, but not with CD31. Immunostaining for VEGFR-1 and VEGFR-2 additionally co-localized with lineage markers for endothelial progenitor cell and monocytes/macrophages, with a more diverse pattern of co-localization for VEGFR-2. CONCLUSION: In a mouse hindlimb ischemia model of peripheral artery disease, [99mTc]scV SPECT tracer-targeting VEGF receptors showed a more robust signal than [99mTc]RGD tracer-targeting αvß3. Immunofluorescent analysis suggests that uptake of [99mTc]scV and [99mTc]RGD in damaged tissue is due to non-overlapping cell populations and reflects different dynamic processes and that enhanced uptake of [99mTc]scV may be due to the presence of VEGF receptors on additional cell types.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Integrina alfaVbeta3/metabolismo , Isquemia/diagnóstico por imagen , Isquemia/metabolismo , Imagen Molecular/métodos , Enfermedad Arterial Periférica/diagnóstico por imagen , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Miembro Posterior/patología , Isquemia/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/patología
7.
Mol Imaging Biol ; 20(1): 85-93, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28421362

RESUMEN

PURPOSE: Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE-/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. PROCEDURES: Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE-/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. RESULTS: Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. CONCLUSIONS: Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/metabolismo , Imagen Molecular/métodos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/complicaciones , Aterosclerosis/patología , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Masculino , Ratones , Polietilenglicoles/química , Anticuerpos de Cadena Única , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
8.
Methods Mol Biol ; 1522: 83-92, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27837532

RESUMEN

We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" interactions between two mutated fragments of human RNase I, a 1-15 aa fragment with the R4C amino acid substitution (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complementary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.


Asunto(s)
Bioquímica/métodos , Sustitución de Aminoácidos , Cromatografía de Afinidad , Proteínas Inmovilizadas/química , Lípidos/química , Liposomas/química , Péptidos/química , Polietilenglicoles/química , Ribonucleasa Pancreática/metabolismo
9.
J Nucl Med ; 57(11): 1811-1816, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27390161

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. METHODS: Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. RESULTS: All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR-mediated tumor uptake of scVR1/Zr and scVR2/Zr was mediated exclusively by the corresponding receptor, VEGFR-1 or VEGFR-2, respectively. In contrast, uptake of pan-receptor scV/Zr was mediated by both VEGFR-1 and VEGFR-2 at an approximately 2:1 ratio. CONCLUSION: First-in-class selective PET tracers for imaging VEGFR-1 and VEGFR-2 were constructed and successfully validated in an orthotopic murine tumor model.


Asunto(s)
Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacocinética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Circonio/farmacocinética , Animales , Línea Celular Tumoral , Marcaje Isotópico , Isótopos/química , Isótopos/farmacocinética , Ratones , Ratones Endogámicos BALB C , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Ingeniería de Proteínas/métodos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factor A de Crecimiento Endotelial Vascular/genética , Circonio/química
10.
EJNMMI Res ; 6(1): 4, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26780081

RESUMEN

BACKGROUND: scVEGF/(177)Lu is a novel radiopharmaceutical targeted by recombinant single-chain (sc) derivative of vascular endothelial growth factor (VEGF) that binds to and is internalized by vascular endothelial growth factor receptors (VEGFR). scVEGF/(177)Lu potential as adjuvant and neoadjuvant anti-angiogenic therapy was assessed in metastatic and orthotopic mouse models of triple-negative breast cancer. METHODS: Metastatic lesions in Balb/c mice were established by intracardiac injection of luciferase-expressing 4T1luc mouse breast carcinoma cells. Mice with metastatic lesions received single intravenous (i.v.) injection of well-tolerated dose of scVEGF/(177)Lu (7.4 MBq/mouse) at day 8 after 4T1luc cell injection. Primary orthotopic breast tumors in immunodeficient mice were established by injecting luciferase-expressing MDA231luc human breast carcinoma cells into mammary fat pad. Tumor-bearing mice were treated with single injections of scVEGF/(177)Lu (7.4 MBq/mouse, i.v), or liposomal doxorubicin (Doxil, 1 mg doxorubicin per kg, i.v.), or with a combination of Doxil and scVEGF/(177)Lu given at the same doses, but two hours apart. "Cold" scVEGF-targeting conjugate was included in controls and in Doxil alone group. The effects of treatments were defined by bioluminescent imaging (BLI), computed tomography (CT), computed microtomography (microCT), measurements of primary tumor growth, and immunohistochemical analysis. RESULTS: In metastatic model, adjuvant treatment with scVEGF/(177)Lu decreased overall metastatic burden and improved survival. In orthotopic primary tumor model, a combination of Doxil and scVEGF/(177)Lu was more efficient in tumor growth inhibition than each treatment alone. scVEGF/(177)Lu treatment decreased immunostaining for VEGFR-1, VEGFR-2, and pro-tumorigenic M2-type macrophage marker CD206. CONCLUSIONS: Selective targeting of VEGFR with well-tolerated doses of scVEGF/(177)Lu is effective in metastatic and primary breast cancer models and can be combined with chemotherapy. As high level of VEGFR expression is a common feature in a variety of cancers, targeted delivery of (177)Lu for specific receptor-mediated uptake warrants further exploration.

11.
Pharm Res ; 32(11): 3746-3755, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26078000

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) is widely used for diagnostic imaging in preclinical studies and in clinical settings. Considering the intrinsic low sensitivity and poor specificity of standard MRI contrast agents, the enhanced delivery of MRI tracers into tumors is an important challenge to be addressed. This study was intended to investigate whether delivery of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by liposomal SPION formulations for either "passive" delivery into tumor via the enhanced permeability and retention (EPR) effect or "active" targeted delivery to tumor endothelium via the receptors for vascular endothelial growth factor (VEGFRs). METHODS: In vivo MRI of orthotopic MDA-MB-231 tumors was performed on a preclinical 9.4 T MRI scanner following intravenous administration of either free/non-targeted or targeted liposomal SPIONs. RESULTS: In vivo MRI study revealed that only the non-targeted liposomal formulation provided a statistically significant accumulation of SPIONs in the tumor at four hours post-injection. The EPR effect contributes to improved accumulation of liposomal SPIONs in tumors compared to the presumably more transient retention during the targeting of the tumor vasculature via VEGFRs. CONCLUSIONS: A non-targeted liposomal formulation of SPIONs could be the optimal option for MRI detection of breast tumors and for the development of therapeutic liposomes for MRI-guided therapy.


Asunto(s)
Medios de Contraste/química , Óxido Ferrosoférrico/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias Mamarias Experimentales/patología , Imagen Molecular/métodos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Humanos , Inmunohistoquímica , Liposomas , Neoplasias Mamarias Experimentales/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Polietilenglicoles/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Propiedades de Superficie , Ensayos Antitumor por Modelo de Xenoinjerto
12.
EJNMMI Res ; 4(1): 41, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26055940

RESUMEN

BACKGROUND: The biology of the vulnerable plaque includes increased inflammation and rapid growth of vasa vasorum, processes that are associated with enhanced vascular endothelial growth factor (VEGF)/ imaging receptors for VEGF (VEGFR) signaling and are accelerated in diabetes. This study was designed to test the hypothesis that VEGFRs in atherosclerotic plaques with a SPECT tracer scVEGF-PEG-DOTA/(99m)Tc (scV/Tc) can identify accelerated atherosclerosis in diabetes. METHODS: Male apolipoprotein E null (ApoE(-/-)) mice (6 weeks of age) were made diabetic (n = 10) or left as non-diabetic (n = 13). At 26 to 28 weeks of age, 5 non-diabetic mice were injected with functionally inactivated scV/Tc (in-scV/Tc) that does not bind to VEGF receptors, while 8 non-diabetic and 10 diabetic mice were injected with scV/Tc. After blood pool clearance, at 3 to 4 h post-injection, mice were injected with CT contrast agent and underwent SPECT/CT imaging. From the scans, regions of interest (ROI) were drawn on serial transverse sections comprising the proximal aorta and the percentage of injected dose (%ID) in ROIs was calculated. At the completion of imaging, mice were euthanized, proximal aorta explanted for gamma well counting to determine the percentage of injected dose per gram (%ID/g) uptake and immunohistochemical characterization. RESULTS: The uptake of scV/Tc in the proximal aorta, calculated from SPECT/CT co-registered scans as %ID, was significantly higher in the diabetic mice (0.036 ± 0.017%ID) compared to non-diabetic mice (0.017 ± 0.005%ID; P < 0.01), as was uptake measured as %ID/g in harvested aorta, 1.81 ± 0.50%ID/g in the diabetic group vs. 0.98 ± 0.25%ID/g in the non-diabetic group (P < 0.01). The nonspecific uptake of in-scV/Tc in proximal aorta was significantly lower than the uptake of functionally active scV/Tc. Immunostaining of the atherosclerotic lesions showed higher expression of VEGFR-1 and VEGFR-2 in the diabetic mice. CONCLUSION: These initial results suggest that imaging VEGFR with scV/Tc shows promise as a non-invasive approach to identify accelerated atherosclerosis.

13.
J Biomed Opt ; 18(12): 126014, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24346856

RESUMEN

To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Verde de Indocianina/metabolismo , Liposomas/metabolismo , Neoplasias Mamarias Experimentales/patología , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Tomografía Óptica/métodos , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Humanos , Verde de Indocianina/química , Liposomas/química , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C
14.
Theranostics ; 2(5): 502-15, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737188

RESUMEN

Angiogenesis is a fundamental requirement for tumor growth and therefore it is a primary target for anti-cancer therapy. Molecular imaging of angiogenesis may provide novel opportunities for early diagnostic and for image-guided optimization and management of therapeutic regimens. Here we reviewed the advances in targeted imaging of key biomarkers of tumor angiogenesis, integrins and receptors for vascular endothelial growth factor (VEGF). Tracers for targeted imaging of these biomarkers in different imaging modalities are now reasonably well-developed and PET tracers for integrin imaging are currently in clinical trials. Molecular imaging of longitudinal responses to anti-angiogenic therapy in model tumor systems revealed a complex pattern of changes in targeted tracer accumulation in tumor, which reflects drug-induced tumor regression followed by vascular rebound. Further work will define the competitiveness of targeted imaging of key angiogenesis markers for early diagnostic and image-guided therapy.

15.
Arterioscler Thromb Vasc Biol ; 32(8): 1849-55, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723442

RESUMEN

OBJECTIVE: Vascular endothelial growth factor (VEGF) signaling plays a key role in the pathogenesis of vascular remodeling, including graft arteriosclerosis. Graft arteriosclerosis is the major cause of late organ failure in cardiac transplantation. We used molecular near-infrared fluorescent imaging with an engineered Cy5.5-labeled single-chain VEGF tracer (scVEGF/Cy) to detect VEGF receptors and vascular remodeling in human coronary artery grafts by molecular imaging. METHODS AND RESULTS: VEGF receptor specificity of probe uptake was shown by flow cytometry in endothelial cells. In severe combined immunodeficiency mice, transplantation of human coronary artery segments into the aorta followed by adoptive transfer of allogeneic human peripheral blood mononuclear cells led to significant neointima formation in the grafts over a period of 4 weeks. Near-infrared fluorescent imaging of transplant recipients at 4 weeks demonstrated focal uptake of scVEGF/Cy in remodeling artery grafts. Uptake specificity was demonstrated using an inactive homolog of scVEGF/Cy. scVEGF/Cy uptake predominantly localized in the neointima of remodeling coronary arteries and correlated with VEGF receptor-1 but not VEGF receptor-2 expression. There was a significant correlation between scVEGF/Cy uptake and transplanted artery neointima area. CONCLUSIONS: Molecular imaging of VEGF receptors may provide a noninvasive tool for detection of graft arteriosclerosis in solid organ transplantation.


Asunto(s)
Arteriosclerosis/diagnóstico , Trasplante de Corazón/efectos adversos , Receptores de Factores de Crecimiento Endotelial Vascular/análisis , Animales , Carbocianinas , Células Cultivadas , Vasos Coronarios/patología , Femenino , Citometría de Flujo , Humanos , Ratones , Imagen Molecular
16.
Eur J Nucl Med Mol Imaging ; 39(2): 300-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109665

RESUMEN

PURPOSE: To prepare and evaluate a new radiotracer for molecular imaging of cell surface receptors for epidermal growth factor (EGF). METHODS: Cys-tagged EGF (cEGF) was labeled with (18)F by coupling the free thiol group of the Cys tag with N-[2-(4-[(18)F]fluorobenzamido)ethyl]maleimide ([(18)F]FBEM) to form [(18)F]FBEM-cEGF. Cell uptake, internalization and efflux of [(18)F]FBEM-cEGF were tested in human head and neck squamous carcinoma UM-SCC1 cells. In vivo tumor targeting and pharmacokinetics of the radiotracers were evaluated in UM-SCC1 tumor-bearing athymic nude mice by static and dynamic microPET imaging. Ex vivo biodistribution assays were performed to confirm the noninvasive imaging results. RESULTS: The radiolabeling yield for [(18)F]FBEM-cEGF was over 60%, based on starting [(18)F]FBEM. [(18)F]FBEM-cEGF exhibited rapid blood clearance through both hepatobiliary and renal excretion. UM-SCC1 tumors were clearly visualized and showed modest tracer uptake of 2.60 ± 0.59 %ID/g at 30 min after injection. Significantly higher tumor uptake of [(18)F]FBEM-cEGF (5.99 ± 1.61%ID/g at 30 min after injection, p < 0.01) and tumor/nontumor ratio were achieved by coinjection of 50 µg of unlabeled EGF. Decreased liver uptake of [(18)F]FBEM-cEGF was observed when unlabeled EGF was coadministered. CONCLUSION: With optimized liver blocking, [(18)F]FBEM-cEGF has the potential to be used in a noninvasive and quantitative manner for detection of malignant lesions and evaluation of EGFR activity.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico , Receptores ErbB/metabolismo , Radioisótopos de Flúor/farmacología , Neoplasias de Cabeza y Cuello/diagnóstico , Maleimidas/farmacología , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Cisteína/química , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Ratones Desnudos , Modelos Químicos , Imagen Multimodal/métodos , Trasplante de Neoplasias , Tomografía de Emisión de Positrones/métodos , Factores de Tiempo , Distribución Tisular , Tomografía Computarizada por Rayos X
17.
J Nucl Med ; 52(10): 1630-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21890879

RESUMEN

UNLABELLED: Tumor vessels abundantly express receptors for vascular endothelial growth factor (VEGF), despite treatment with conventional or antiangiogenic drugs. We wished to determine whether the high levels of VEGF receptor (VEGFR) within the tumor vasculature could be leveraged for intracellular delivery of therapeutically significant doses of scVEGF/(177)Lu, a novel radiopharmaceutical based on a recombinant single-chain (sc) derivative of VEGF, in orthotopic breast cancer models. METHODS: scVEGF-PEG (polyethylene gycol)-DOTA conjugates containing 2.0-, 3.4-, or 5.0-kDa PEG linkers site-specifically conjugated to a cysteine-containing tag (Cys-tag) in scVEGF were radiolabeled with (177)Lu (scVEGF/(177)Lu) for in vivo studies. Human MDA231luc and mouse 4T1luc cell lines were injected orthotopically to establish breast carcinoma tumors in immunodeficient and immunocompetent hosts, respectively. The effects of scVEGF/(177)Lu were defined by analysis of changes in tumor growth and immunohistochemical staining for the endothelial markers CD31 and VEGFR-2 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining for intratumoral apoptosis. RESULTS: Biodistribution assays and dosimetric calculations established that scVEGF/(177)Lu with a 3.4-kDa PEG linker delivered the highest dose of radiation to tumors (69.9 cGy/MBq/g of tissue) and the lowest dose to the kidneys (33.3 cGy/MBq/organ). Total doses below 40 MBq/mouse of scVEGF/(177)Lu did not affect renal function, and 3 divided doses of 6.3 MBq/mouse or a bolus dose of 18.9 MBq/mouse induced only transient lymphopenia and weight loss (<10% baseline weight). In mice with orthotopic mammary breast carcinoma, intravenous injections of well-tolerated bolus and fractionated doses of scVEGF/(177)Lu in the range from 6.3 to 18.9 MBq/mouse (25-76 MBq/m(2)) resulted in dose-dependent tumor growth inhibition. Immunohistochemical analysis of tumors at 4-5 wk after single injections of scVEGF/(177)Lu indicated dose-dependent regression of tumor vasculature and widespread intratumoral apoptosis. A single dose of 7.4 MBq/mouse of scVEGF/(177)Lu given before a course of bevacizumab or sunitinib treatment enhanced the antiangiogenic effects of both drugs. CONCLUSION: Selective targeting of VEGFR in tumor vasculature with well-tolerated doses of scVEGF/(177)Lu is effective in orthotopic breast cancer models. As high levels of VEGFR expression in the tumor vasculature are a common feature in a variety of cancers, targeting tumor angiogenesis with scVEGF/(177)Lu warrants further exploration.


Asunto(s)
Neoplasias de la Mama/radioterapia , Lutecio/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Apoptosis/efectos de la radiación , Bevacizumab , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Células Endoteliales/efectos de la radiación , Femenino , Humanos , Indoles/uso terapéutico , Lutecio/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones SCID , Neovascularización Patológica/radioterapia , Pirroles/uso terapéutico , Radioisótopos/farmacocinética , Radioisótopos/uso terapéutico , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/efectos de la radiación , Sunitinib , Factor A de Crecimiento Endotelial Vascular/farmacocinética
18.
Methods Enzymol ; 491: 37-56, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21329793

RESUMEN

Rapid growth of tumor cells coupled with inadequate vascularization leads to shortage of oxygen and nutrients. The unfolded protein response (UPR), a defense cellular mechanism activated during such stress conditions, is a complex process that includes upregulation of the endoplasmic reticulum chaperones, such as glucose-regulated protein 78 (GRP78). Due to its central role in UPR, GRP78 is overexpressed in many cancers; it is implicated in cancer cell survival through supporting of drug- and radioresistance as well as metastatic dissemination, and is generally associated with poor outcome. This is the reason why selective destruction of GRP78 could become a novel anticancer strategy. GRP78 is the only known substrate of the proteolytic A subunit (SubA) of a bacterial AB(5) toxin, and the selective SubA-induced cleavage of GRP78 leads to massive cell death. Targeted delivery of SubA into cancer cells via specific receptor-mediated endocytosis could be a suitable strategy for assaulting tumor cells. We fused SubA to epidermal growth factor (EGF), whose receptor (EGFR) is frequently overexpressed in tumor cells, and demonstrated that the resulting EGF-SubA immunotoxin is an effective killer of EGFR-positive tumor cells. Furthermore, because of its unique mechanism of action, EGF-SubA synergizes with UPR-inducing drugs, which opens a possibility for the development of mechanism-based combination regimens for effective anticancer therapy. In this chapter, we provide experimental protocols for the assessment of the effects of EGF-SubA on EGFR-positive cancer cells, either alone or in combination with UPR-inducing drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteínas de Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico , Respuesta de Proteína Desplegada , Animales , Antineoplásicos/uso terapéutico , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Tapsigargina/farmacología , Tapsigargina/uso terapéutico
19.
Mol Imaging Biol ; 13(6): 1173-82, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21042865

RESUMEN

PURPOSE: Increased vascular endothelial growth factor (VEGF) receptor expression has been found at the sites of angiogenesis, particularly in tumor growth areas, as compared with quiescent vasculature. An increase in VEGF receptor-2 is associated with colon cancer progression. The in vivo detection of VEGF receptor is of interest for the purposes of studying basic mechanisms of carcinogenesis, making clinical diagnoses, and monitoring the efficacy of chemopreventive and therapeutic agents. In this study, a novel single chain (sc)VEGF-based molecular probe is utilized in the azoxymethane (AOM)-treated mouse model of colorectal cancer to study delivery route and specificity for disease. PROCEDURES: The probe was constructed by site-specific conjugation of a near-infrared fluorescent dye, Cy5.5, to scVEGF and detected in vivo with a dual-modality optical coherence tomography/laser-induced fluorescence (OCT/LIF) endoscopic system. A probe inactivated via excessive biotinylation was utilized as a control for nonreceptor-mediated binding. The LIF excitation source was a 633-nm He:Ne laser, and red/near-infrared fluorescence was detected with a spectrometer. OCT was used to obtain two-dimensional longitudinal tomograms at eight rotations in the distal colon. Fluorescence emission levels were correlated with OCT-detected disease in vivo. OCT-detected disease was verified with hematoxylin and eosin stained histology slides ex vivo. RESULTS: High fluorescence emission intensity from the targeted probe was correlated with tumor presence as detected using OCT in vivo and VEGFR-2 immunostaining on histological sections ex vivo. The inactivated probe accumulated preferentially on the surface of tumor lesions and in lymphoid aggregate tissue and was less selective for VEGFR-2. CONCLUSION: The scVEGF/Cy probe delivered via colonic lavage reaches tumor vasculature and selectively accumulates in VEGFR-2-positive areas, resulting in high sensitivity and specificity for tumor detection. The combination of OCT and LIF imaging modalities may allow the simultaneous study of tumor morphology and protein expression for the development of diagnostic and therapeutic methods for colorectal cancer.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Imagenología Tridimensional/métodos , Rayos Láser , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Espectroscopía Infrarroja Corta , Tomografía de Coherencia Óptica/métodos , Animales , Azoximetano , Colon/patología , Modelos Animales de Enfermedad , Ratones , Microscopía Fluorescente
20.
Neoplasia ; 12(10): 797-806, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20927318

RESUMEN

PURPOSE: Tumor endothelial cells express vascular endothelial growth factor receptor 2 (VEGFR-2). VEGF can direct toxins to tumor vessels through VEGFR-2 for antiangiogenic therapy. This study aimed to selectively damage the VEGFR-2-overexpressing vasculature of pancreatic cancer by SLT-VEGF fusion protein comprising VEGF and the A subunit of Shiga-like toxin which inhibits protein synthesis of cells with high VEGFR-2 expression. EXPERIMENTAL DESIGN: Expression of VEGF and VEGF receptors was evaluated in human pancreatic cancer cells (AsPC-1, HPAF-2) and in normal human endothelial cells (HUVEC) by reverse transcription-polymerase chain reaction. Cells were treated with SLT-VEGF (0.1-10 nM), and cell viability, proliferation, and endothelial tube formation were assessed. Orthotopic pancreatic cancer (AsPC-1, HPAF-2) was induced in nude mice. Animals were treated with SLT-VEGF fusion protein alone or in combination with gemcitabine. Treatment began 3 days or 6 weeks after tumor induction. Primary tumor volume and dissemination were determined after 14 weeks. Microvessel density and expression of VEGF and VEGF receptors were analyzed by immunohistochemistry. RESULTS: SLT-VEGF did not influence proliferation of pancreatic cancer cells; HUVECs (low-level VEGFR-2) reduced their proliferation rate and tube formation but not their viability. SLT-VEGF fusion protein reduced tumor growth and dissemination, increasing 14-week survival (AsPC-1, up to 75%; HPAF-2, up to 83%). Results of gemcitabine were comparable with SLT-VEGF monotherapy. Combination partly increased the therapeutic effects in comparison to the respective monotherapies. Microvessel density was reduced in all groups. Intratumoral VEGFR-2 expression was found in endothelial but not in tumor cells. CONCLUSIONS: SLT-VEGF is toxic for tumor vasculature rather than for normal endothelial or pancreatic cancer cells. SLT-VEGF treatment in combination with gemcitabine may provide a novel approach for pancreatic cancer.


Asunto(s)
Adenocarcinoma/terapia , Endotelio Vascular/efectos de los fármacos , Neoplasias Pancreáticas/terapia , Proteínas Recombinantes de Fusión/uso terapéutico , Toxinas Shiga/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Western Blotting , Movimiento Celular , Proliferación Celular , Células Cultivadas , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Neovascularización Patológica/prevención & control , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Toxinas Shiga/genética , Transducción de Señal , Tasa de Supervivencia , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...