Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Struct Mol Biol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671230

RESUMEN

Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid ß-sheet or 'clamp' with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.

2.
J Virol ; 97(10): e0083223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796128

RESUMEN

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several B cell malignancies and Kaposi's sarcoma. We analyzed the function of K8.1, the major antigenic component of the KSHV virion in the infection of different cells. To do this, we deleted K8.1 from the viral genome. It was found that K8.1 is critical for the infection of certain epithelial cells, e.g., a skin model cell line but not for infection of many other cells. K8.1 was found to mediate attachment of the virus to cells where it plays a role in infection. In contrast, we did not find K8.1 or a related protein from a closely related monkey virus to activate fusion of the viral and cellular membranes, at least not under the conditions tested. These findings suggest that K8.1 functions in a highly cell-specific manner during KSHV entry, playing a crucial role in the attachment of KSHV to, e.g., skin epithelial cells.


Asunto(s)
Glicoproteínas , Herpesvirus Humano 8 , Queratinocitos , Proteínas Virales , Acoplamiento Viral , Internalización del Virus , Humanos , Glicoproteínas/deficiencia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Queratinocitos/metabolismo , Queratinocitos/virología , Sarcoma de Kaposi/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Fusión de Membrana , Piel/citología
3.
Open Forum Infect Dis ; 10(7): ofad340, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37496603

RESUMEN

Background: The seasonal human coronaviruses (HCoV) NL63, 229E, OC43, and HKU1 are globally endemic, yet the majority of HCoV infections remain undiagnosed. Methods: In a cross-sectional study, 2389 serum samples were collected from children and adults in France in 2020. In a longitudinal cohort study, 2520 samples were collected from 898 French individuals followed up between 2020 and 2021. Antibodies to HCoVs were measured using a bead-based multiplex assay. Results: The rate of waning of anti-HCoV spike immunoglobulin G antibodies was estimated as 0.22-0.47 year-1 for children, and 0.13-0.27 year-1 for adults. Seroreversion was estimated as 0.31-1.37 year-1 in children and 0.19-0.72 year-1 in adults. The estimated seroconversion rate in children was consistent with 20%-39% of children being infected every year with each HCoV. Conclusions: The high force of infection in children indicates that HCoVs may be responsible for a substantial proportion of fever episodes experienced by children.

4.
Euro Surveill ; 28(25)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347417

RESUMEN

BackgroundThe risk of SARS-CoV-2 (re-)infection remains present given waning of vaccine-induced and infection-acquired immunity, and ongoing circulation of new variants.AimTo develop a method that predicts virus neutralisation and disease protection based on variant-specific antibody measurements to SARS-CoV-2 antigens.MethodsTo correlate antibody and neutralisation titres, we collected 304 serum samples from individuals with either vaccine-induced or infection-acquired SARS-CoV-2 immunity. Using the association between antibody and neutralisation titres, we developed a prediction model for SARS-CoV-2-specific neutralisation titres. From predicted neutralising titres, we inferred protection estimates to symptomatic and severe COVID-19 using previously described relationships between neutralisation titres and protection estimates. We estimated population immunity in a French longitudinal cohort of 905 individuals followed from April 2020 to November 2021.ResultsWe demonstrated a strong correlation between anti-SARS-CoV-2 antibodies measured using a low cost high-throughput assay and antibody response capacity to neutralise live virus. Participants with a single vaccination or immunity caused by infection were especially vulnerable to symptomatic or severe COVID-19. While the median reduced risk of COVID-19 from Delta variant infection in participants with three vaccinations was 96% (IQR: 94-98), median reduced risk among participants with infection-acquired immunity was only 42% (IQR: 22-66).ConclusionOur results are consistent with data from vaccine effectiveness studies, indicating the robustness of our approach. Our multiplex serological assay can be readily adapted to study new variants and provides a framework for development of an assay that would include protection estimates.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/epidemiología , Francia/epidemiología , Reinfección , SARS-CoV-2
5.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37252802

RESUMEN

SARS-CoV-2 mRNA vaccination generates protective B cell responses targeting the SARS-CoV-2 spike glycoprotein. Whereas anti-spike memory B cell responses are long lasting, the anti-spike humoral antibody response progressively wanes, making booster vaccinations necessary for maintaining protective immunity. Here, we qualitatively investigated the plasmablast responses by measuring from single cells within hours of sampling the affinity of their secreted antibody for the SARS-CoV-2 spike receptor binding domain (RBD) in cohorts of BNT162b2-vaccinated naive and COVID-19-recovered individuals. Using a droplet microfluidic and imaging approach, we analyzed more than 4,000 single IgG-secreting cells, revealing high interindividual variability in affinity for RBD, with variations over 4 logs. High-affinity plasmablasts were induced by BNT162b2 vaccination against Hu-1 and Omicron RBD but disappeared quickly thereafter, whereas low-affinity plasmablasts represented more than 65% of the plasmablast response at all time points. Our droplet-based method thus proves efficient at fast and qualitative immune monitoring and should be helpful for optimization of vaccination protocols.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , SARS-CoV-2/genética , Microfluídica , COVID-19/prevención & control , ARN Mensajero
6.
PLoS Pathog ; 19(4): e1011339, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37093892

RESUMEN

Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.


Asunto(s)
Hominidae , Virus Espumoso de los Simios , Animales , Humanos , Virus Espumoso de los Simios/genética , Retroviridae , Anticuerpos Neutralizantes , Epítopos de Linfocito B/genética , Anticuerpos Anti-VIH
7.
Nat Commun ; 14(1): 1262, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878926

RESUMEN

The surface envelope glycoprotein (Env) of all retroviruses mediates virus binding to cells and fusion of the viral and cellular membranes. A structure-function relationship for the HIV Env that belongs to the Orthoretrovirus subfamily has been well established. Structural information is however largely missing for the Env of Foamy viruses (FVs), the second retroviral subfamily. In this work we present the X-ray structure of the receptor binding domain (RBD) of a simian FV Env at 2.57 Å resolution, revealing two subdomains and an unprecedented fold. We have generated a model for the organization of the RBDs within the trimeric Env, which indicates that the upper subdomains form a cage-like structure at the apex of the Env, and identified residues K342, R343, R359 and R369 in the lower subdomain as key players for the interaction of the RBD and viral particles with heparan sulfate.


Asunto(s)
Virus Espumoso de los Simios , Spumavirus , Retroviridae , Membrana Celular , Glicoproteínas de Membrana
8.
PLoS One ; 17(11): e0277827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36409702

RESUMEN

Studies on the humoral response to homologous BNT162b2 mRNA-vaccination focus mainly on IgG antibody dynamics, while long-term IgA kinetics are understudied. Herein, kinetics of IgG and IgA levels against trimeric-Spike (S) and Receptor-Binding-Domain (RBD) were evaluated by in-house ELISAs in 146 two-dose vaccinated Greek healthcare workers (HCWs) in a 9-month period at six time points (up to 270 days after the first dose). The effect of a homologous booster third dose was also studied and evaluated. The peak of immune response was observed 21 days after the second dose; 100% seroconversion rate for anti-S and anti-RBD IgG, and 99.7% and 96.3% respectively for IgA. IgG antibody levels displayed higher increase compared to IgA. Declining but persistent anti-SARS-CoV-2 antibody levels were detected 9 months after vaccination; IgG and IgA anti-S levels approached those after the first dose, while a more rapid reduction rate for anti-RBD antibodies led to significantly lower levels for both classes, supporting the need for a booster dose. Indeed, a homologous booster third dose resulted in enhanced levels of anti-S of both classes, whereas anti-RBD didn't exceed the peak levels after the second dose. Previous SARS-CoV-2 infection, flu vaccination, BMI<35 and the occurrence of an adverse event upon vaccination, were associated with higher IgG antibody levels over time, which however were negatively affected by age increase and the presence of chronic diseases. Overall, after concurrently using the S and RBD target-antigens in in-house ELISAs, we report in addition to IgG, long-term persistence of IgA antibodies. Regarding antibody levels, homologous mRNA vaccination gives rise to an effective anti-viral protection up to 9 months negatively correlated to age. Considering that COVID-19 is still a matter of public concern, booster vaccine doses remain critical to vulnerable individuals.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , ARN Mensajero , Grecia , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Personal de Salud
9.
J Exp Med ; 219(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35704748

RESUMEN

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunoglobulina A , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus
10.
Viruses ; 14(3)2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35336948

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is associated with a significant disease burden, in particular in Sub-Sahara Africa. A KSHV vaccine would be highly desirable, but the mechanisms underlying neutralizing antibody responses against KSHV remain largely unexplored. The complex made of glycoproteins H and L (gH/gL) activates gB for the fusion of viral and cellular membranes in all herpesviruses. KSHV gH/gL also interacts with cellular Eph family receptors. To identify optimal antigens for vaccination and to elucidate neutralization mechanisms, we primed mice with recombinantly expressed, soluble gH/gL (gHecto/gL) that was either wildtype (WT), lacking defined glycosylation sites or bearing modified glycosylation, followed by boosts with WT gHecto/gL. We also immunized with a gL-gHecto fusion protein or a gHecto-ferritin/gL nanoparticle. Immune sera neutralized KSHV and inhibited EphA2 receptor binding. None of the regimens was superior to immunization with WT gHecto/gL with regard to neutralizing activity and EphA2 blocking activity, the gL-gHecto fusion protein was equally effective, and the ferritin construct was inferior. gH/gL-targeting sera inhibited gB-mediated membrane fusion and inhibited infection also independently from receptor binding and gL, as demonstrated by neutralization of a novel KSHV mutant that does not or only marginally incorporate gL into the gH/gL complex and infects through an Eph-independent route.


Asunto(s)
Herpesvirus Humano 8 , Animales , Anticuerpos Neutralizantes/metabolismo , Ferritinas , Herpesvirus Humano 8/metabolismo , Ratones , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
11.
PLoS Biol ; 19(9): e3001392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499637

RESUMEN

Human herpesvirus 8 (HHV-8) is an oncogenic virus that enters cells by fusion of the viral and endosomal cellular membranes in a process mediated by viral surface glycoproteins. One of the cellular receptors hijacked by HHV-8 to gain access to cells is the EphA2 tyrosine kinase receptor, and the mechanistic basis of EphA2-mediated viral entry remains unclear. Using X-ray structure analysis, targeted mutagenesis, and binding studies, we here show that the HHV-8 envelope glycoprotein complex H and L (gH/gL) binds with subnanomolar affinity to EphA2 via molecular mimicry of the receptor's cellular ligands, ephrins (Eph family receptor interacting proteins), revealing a pivotal role for the conserved gH residue E52 and the amino-terminal peptide of gL. Using FSI-FRET and cell contraction assays, we further demonstrate that the gH/gL complex also functionally mimics ephrin ligand by inducing EphA2 receptor association via its dimerization interface, thus triggering receptor signaling for cytoskeleton remodeling. These results now provide novel insight into the entry mechanism of HHV-8, opening avenues for the search of therapeutic agents that could interfere with HHV-8-related diseases.


Asunto(s)
Herpesvirus Humano 8/fisiología , Imitación Molecular , Proteínas Tirosina Quinasas Receptoras/metabolismo , Internalización del Virus , Animales , Línea Celular , Drosophila , Efrinas , Células HEK293 , Humanos , Ligandos , Glicoproteínas de Membrana/metabolismo , Transducción de Señal , Proteínas del Envoltorio Viral
12.
J Infect Dis ; 224(9): 1489-1499, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34282461

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Formación de Anticuerpos , Especificidad de Anticuerpos , COVID-19/epidemiología , Femenino , Francia/epidemiología , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Adulto Joven
13.
mBio ; 12(3)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947756

RESUMEN

Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.IMPORTANCE The class III fusion protein glycoprotein B (gB) drives membrane fusion during entry and spread of herpesviruses. To mediate fusion, gB requires activation by the conserved gH/gL complex by a poorly defined mechanism. A detailed molecular-level understanding of herpesvirus membrane fusion is of fundamental virological interest and has considerable potential for the development of new therapeutics blocking herpesvirus cell invasion and spread. Using in vitro evolution and targeted mutagenesis of three different animal alphaherpesviruses, we identified a single conserved amino acid in a regulatory helix in the center of the gB ectodomain that enables efficient gH/gL-independent entry and plays a crucial role in the pre-to-postfusion transition of gB. Our results propose that the central helix is a key regulatory element involved in the intrastructural signal transduction between the endo- and ectodomain for fusion activation. This study expands our understanding of herpesvirus membrane fusion and uncovers potential targets for therapeutic interventions.


Asunto(s)
Aminoácidos/genética , Evolución Molecular Dirigida , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Aminoácidos/química , Animales , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/química
14.
Euro Surveill ; 26(13)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33797390

RESUMEN

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Coronavirus Humano OC43 , SARS-CoV-2/inmunología , Síndrome de Respuesta Inflamatoria Sistémica , Adolescente , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Niño , Preescolar , Estudios Transversales , Femenino , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Paris , Estaciones del Año , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus
16.
Lancet Microbe ; 2(2): e60-e69, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33521709

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces an antibody response targeting multiple antigens that changes over time. This study aims to take advantage of this complexity to develop more accurate serological diagnostics. METHODS: A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples collected up to 39 days after symptom onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-confirmed SARS-CoV-2 infection, and negative control serum samples collected from healthy adult blood donors before the start of the SARS-CoV-2 epidemic (335 samples from France, Thailand, and Peru). Machine learning classifiers were trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection, with the best classification performance displayed by a random forests algorithm. A Bayesian mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low-transmission settings. FINDINGS: IgG antibody responses to trimeric spike protein (Stri) identified individuals with previous SARS-CoV-2 infection with 91·6% (95% CI 87·5-94·5) sensitivity and 99·1% (97·4-99·7) specificity. Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98·8% (96·5-99·6) sensitivity and 99·3% (97·6-99·8) specificity. Informed by existing data from other coronaviruses, we estimate that 1 year after infection, a monoplex assay with optimal anti-Stri IgG cutoff has 88·7% (95% credible interval 63·4-97·4) sensitivity and that a four-antigen multiplex assay can increase sensitivity to 96·4% (80·9-100·0). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 2%, below the false-positivity rate of many other assays. INTERPRETATION: Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected more than 6 months ago and measuring seroprevalence in serological surveys in very low-transmission settings. FUNDING: European Research Council. Fondation pour la Recherche Médicale. Institut Pasteur Task Force COVID-19.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , Teorema de Bayes , COVID-19/diagnóstico , Humanos , Inmunoglobulina G , Inmunoglobulina M , Aprendizaje Automático , SARS-CoV-2 , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
17.
One Health ; 10: 100164, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32904469

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. In this cross-sectional study, we tested the antibody response in a cluster of 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no antibodies against SARS-CoV-2 were detectable in their blood one month after the index case was reported, using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.

18.
Sci Transl Med ; 12(559)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32817357

RESUMEN

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Prueba de COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Citometría de Flujo/métodos , Francia/epidemiología , Voluntarios Sanos , Humanos , Inmunoprecipitación/métodos , Luciferasas , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Investigación Biomédica Traslacional , Adulto Joven
19.
PLoS Pathog ; 16(7): e1008560, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32667948

RESUMEN

Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/inmunología , Inmunización Pasiva , Inmunoglobulina G/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/inmunología , Citomegalovirus/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/farmacología , Ratones
20.
J Mol Biol ; 431(24): 4922-4940, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31711961

RESUMEN

The retroviral envelope-derived proteins syncytin-1 and syncytin-2 (syn1 and syn2) drive placentation in humans by forming a syncytiotophoblast, a structure allowing for an exchange interface between maternal and fetal blood during pregnancy. Despite their essential role, little is known about the molecular mechanism underlying the syncytins' function. We report here the X-ray structures of the syn1 and syn2 transmembrane subunit ectodomains, featuring a 6-helix bundle (6HB) typical of the post-fusion state of gamma-retrovirus and filovirus fusion proteins. Contrary to the filoviruses, for which the fusion glycoprotein was crystallized both in the post-fusion and in the spring-loaded pre-fusion form, the highly unstable nature of the syncytins' prefusion form has precluded structural studies. We undertook a proline-scanning approach searching for regions in the syn1 6HB central helix that tolerate the introduction of helix-breaker residues and still fold correctly in the pre-fusion form. We found that there is indeed such a region, located two α-helical turns downstream a stutter in the central coiled-coil helix - precisely where the breaks of the spring-loaded helix of the filoviruses map. These mutants were fusion-inactive as they cannot form the 6HB, similar to the "SOSIP" mutant of HIV Env that allowed the high-resolution structural characterization of its labile pre-fusion form. These results now open a new window of opportunity to engineer more stable variants of the elusive pre-fusion trimer of the syncytins and other gamma-retroviruses envelope proteins for structural characterization.


Asunto(s)
Productos del Gen env/química , Modelos Moleculares , Proteínas Gestacionales/química , Conformación Proteica , Secuencia de Aminoácidos , Cristalografía por Rayos X , Gammaretrovirus , Productos del Gen env/metabolismo , Humanos , Proteínas Gestacionales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas del Envoltorio Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...