Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Biogeosci ; 128(4): 2022jg007258, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37457913

RESUMEN

Measurements of ecosystem carbon (C) fluxes in temperate forests are concentrated in the Northern Hemisphere, leaving the functionally diverse temperate forests in the Southern Hemisphere underrepresented. Here, we report three years (February 2018-January 2021) of C fluxes, studied with eddy-covariance and closed chamber techniques, in an endangered temperate evergreen rainforest of the long-lived paleoendemic South American conifer Fitzroya cupressoides. Using classification and regression trees we analyzed the most relevant drivers and thresholds of daily net ecosystem exchange (NEE) and soil respiration. The annual NEE showed that the forest was a moderate C sink during the period analyzed (-287±38 g C m-2 year -1). We found that the capacity to capture C of the Fitzroya rainforests in the Coastal Range of southern Chile is optimal under cool and rainy conditions in the early austral spring (October-November) and decreases rapidly towards the summer dry season (January-February) and autumn. Although the studied forest type has a narrow geographical coverage, the gross primary productivity measured at the tower was highly representative of Fitzroya and other rainforests in the region. Our results suggest that C fluxes in paleoendemic cool F. cupressoides forests may be negatively affected by the warming and drying predicted by climate change models, reinforcing the importance of maintaining this and other long-term ecological research sites in the Southern Hemisphere.

2.
Sci Rep ; 8(1): 10420, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29973703

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 1973, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386626

RESUMEN

Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr-1 to 166 ± 10 PgCyr-1, bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr-1. Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.


Asunto(s)
Carbono/análisis , Clorofila/análisis , Internacionalidad , Luz Solar , Fluorescencia , Geografía , Estaciones del Año , Factores de Tiempo , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA