Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 12(1): 174, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37463888

RESUMEN

Advancement in mid-infrared (MIR) technology has led to promising biomedical applications of MIR spectroscopy, such as liquid biopsy or breath diagnosis. On the contrary, MIR microscopy has been rarely used for live biological samples in an aqueous environment due to the lack of spatial resolution and the large water absorption background. Recently, mid-infrared photothermal (MIP) imaging has proven to be applicable to 2D and 3D single-cell imaging with high spatial resolution inherited from visible light. However, the maximum measurement rate has been limited to several frames s-1, limiting its range of use. Here, we develop a significantly improved wide-field MIP quantitative phase microscope with two orders-of-magnitude higher signal-to-noise ratio than previous MIP imaging techniques and demonstrate live-cell imaging beyond video rate. We first derive optimal system design by numerically simulating thermal conduction following the photothermal effect. Then, we develop the designed system with a homemade nanosecond MIR optical parametric oscillator and a high full-well-capacity image sensor. Our high-speed and high-spatial-resolution MIR microscope has great potential to become a new tool for life science, in particular for live-cell analysis.

2.
Light Sci Appl ; 12(1): 48, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869075

RESUMEN

High-speed measurement confronts the extreme speed limit when the signal becomes comparable to the noise level. In the context of broadband mid-infrared spectroscopy, state-of-the-art ultrafast Fourier-transform infrared spectrometers, in particular dual-comb spectrometers, have improved the measurement rate up to a few MSpectra s-1, which is limited by the signal-to-noise ratio. Time-stretch infrared spectroscopy, an emerging ultrafast frequency-swept mid-infrared spectroscopy technique, has shown a record-high rate of 80 MSpectra s-1 with an intrinsically higher signal-to-noise ratio than Fourier-transform spectroscopy by more than the square-root of the number of spectral elements. However, it can measure no more than ~30 spectral elements with a low resolution of several cm-1. Here, we significantly increase the measurable number of spectral elements to more than 1000 by incorporating a nonlinear upconversion process. The one-to-one mapping of a broadband spectrum from the mid-infrared to the near-infrared telecommunication region enables low-loss time-stretching with a single-mode optical fiber and low-noise signal detection with a high-bandwidth photoreceiver. We demonstrate high-resolution mid-infrared spectroscopy of gas-phase methane molecules with a high resolution of 0.017 cm-1. This unprecedentedly high-speed vibrational spectroscopy technique would satisfy various unmet needs in experimental molecular science, e.g., measuring ultrafast dynamics of irreversible phenomena, statistically analyzing a large amount of heterogeneous spectral data, or taking broadband hyperspectral images at a high frame rate.

3.
Opt Express ; 28(14): 20794-20807, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680132

RESUMEN

Nonlinear optical microscopy allows for rapid high-resolution microscopy with image contrast generated from the intrinsic properties of the sample. Established modalities, such as multiphoton excited fluorescence and second/third-harmonic generation, can be combined with other nonlinear techniques, such as coherent Raman spectroscopy, which typically allow chemical imaging of a single resonant vibrational mode of a sample. Here, we utilize a single ultrafast laser source to obtain broadband coherent Raman spectra on a microscope, together with other nonlinear microscopy approaches on the same instrument. We demonstrate that the coherent Raman modality allows broadband measurement (>1000 cm-1), with high spectral resolution (<5 cm-1), with a rapid spectral acquisition rate (3-12 kHz). This enables Raman hyperspectral imaging of kilo-pixel images at >11 frames per second.

4.
Nat Commun ; 10(1): 4411, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562337

RESUMEN

Vibrational spectroscopy, comprised of infrared absorption and Raman scattering spectroscopy, is widely used for label-free optical sensing and imaging in various scientific and industrial fields. The two molecular spectroscopy methods are sensitive to different types of vibrations and provide complementary vibrational spectra, but obtaining complete vibrational information with a single spectroscopic device is challenging due to the large wavelength discrepancy between the two methods. Here, we demonstrate simultaneous infrared absorption and Raman scattering spectroscopy that allows us to measure the complete broadband vibrational spectra in the molecular fingerprint region with a single instrument based on an ultrashort pulsed laser. The system is based on dual-modal Fourier-transform spectroscopy enabled by efficient use of nonlinear optical effects. Our proof-of-concept experiment demonstrates rapid, broadband and high spectral resolution measurements of complementary spectra of organic liquids for precise and accurate molecular analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA