Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Electron. j. biotechnol ; 28: 101-112, July. 2017. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1015977

RESUMEN

Background: The hydrolysis of keratin wastes by microorganisms is considered a biotechnological alternative for recycling and valorization through keratinolytic microorganisms. Despite their resistant structure, keratin wastes can be efficiently degraded by various microorganisms through the secretion of keratinases, which are promising enzymes for several applications, including detergents, fertilizers, and leather and textile industry. In an attempt to isolate keratinolytic microorganisms that can reach commercial exploitation as keratinase producers, the current work assesses the dynamics of keratin biodegradation by several keratinolytic fungal strains isolated from soil. The activity of fungal strains to degrade keratin substrates was evaluated by SEM, FTRIR-ATR spectra and TGA analysis. Results: SEM observations offered relevant information on interactions between microorganism and structural elements of hair strands. FTIR spectra of the bands at 1035­1075 cm-1 assigned to sulfoxide bond appeared because of S­S bond breaking, which demonstrated the initiation of keratin biodegradation. According to TGA, in the second zone of thermal denaturation, where keratin degradation occurs, the highest weight loss of 71.10% was obtained for sample incubated with Fusarium sp. 1A. Conclusions: Among the tested strains, Fusarium sp. 1A was the most active organism in the degradation process with the strongest denaturation of polypeptide chains. Because keratinolytic microorganisms and their enzymes keratinases represent a subject of scientific and economic interest because of their capability to hydrolyze keratin, Fusarium sp. 1A was selected for further studies.


Asunto(s)
Hongos/enzimología , Hongos/metabolismo , Queratinas/metabolismo , Péptido Hidrolasas/metabolismo , Termogravimetría , Trichoderma/metabolismo , Trichophyton/metabolismo , Biodegradación Ambiental , Microscopía Electrónica de Rastreo , Cladosporium/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Fusarium/metabolismo , Hidrólisis , Queratinas/química , Microsporum/metabolismo
2.
Sensors (Basel) ; 16(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886072

RESUMEN

For the first time the electropolymerization of 2,6-dihydroxynaphthalene (2,6-DHN) on a screen printed carbon electrode (SPCE) was investigated and evaluated for peroxynitrite (PON) detection. Cyclic voltammetry was used to electrodeposit the poly(2,6-DHN) on the carbon electrode surface. The surface morphology and structure of poly(2,6-DHN) film were investigated by SEM and FTIR analysis, and the electrochemical features by cyclic voltammetry. The poly(2,6-DHN)/SPCE sensor showed excellent electrocatalytic activity for PON oxidation in alkaline solutions at very low potentials (0-100 mV vs. Ag/AgCl pseudoreference). An amperometric FIA (flow injection analysis) system based on the developed sensor was optimized for PON measurements and a linear concentration range from 2 to 300 µM PON, with a LOD of 0.2 µM, was achieved. The optimized sensor inserted in the FIA system exhibited good sensitivity (4.12 nA·µM-1), selectivity, stability and intra-/inter-electrode reproducibility for PON determination.

3.
Dalton Trans ; 44(17): 7844-53, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25820535

RESUMEN

A bioinspired one-pot approach for the synthesis of ZnO-carbohydrate hierarchical architectures was developed. The synergy between a saccharide (mono-, di- or polysaccharide) that contains d-glucose units and triethanolamine is the key parameter of the synthetic methodology. The morphology of the ZnO composites is dictated by the saccharide used, and rod, spindle, solid and hollow spherical-like ZnO structures are obtained by varying the carbohydrate. The synthesized composites present good photocatalytic and antimicrobial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA