Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256041

RESUMEN

The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.


Asunto(s)
Caricaceae , Trastorno Depresivo Mayor , Humanos , Astrocitos , Depresión , Mitocondrias , Neuronas , Fibroblastos , Mitomicina
2.
Cell Death Dis ; 15(1): 100, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38286985

RESUMEN

Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/metabolismo , Necroptosis/fisiología , Proteínas Quinasas/metabolismo , Modelos Animales de Enfermedad , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
Acta Neuropathol Commun ; 11(1): 147, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697350

RESUMEN

TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.


Asunto(s)
Glioblastoma , Glioma , Células Madre Mesenquimatosas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Macrófagos Asociados a Tumores , Macrófagos , Receptores de GABA/genética
4.
Proc Natl Acad Sci U S A ; 120(32): e2301689120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523564

RESUMEN

The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Ratones , Animales , Anciano , SARS-CoV-2/genética , COVID-19/genética , Virulencia/genética , Mutación , Modelos Animales de Enfermedad
5.
Acta Neuropathol Commun ; 11(1): 75, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158962

RESUMEN

Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Factor de Necrosis Tumoral alfa , Encéfalo , Linfocitos T CD8-positivos , Neoplasias Encefálicas/genética , Receptores de GABA/genética
6.
Cells ; 12(6)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980295

RESUMEN

Microglia are the resident immune cells of the central nervous system. Upon stimulus presentation, microglia polarize from a resting to an activated state. Microglial translocator protein 18 kDa (TSPO) is considered a marker of inflammation. Here, we characterized the role of TSPO by investigating the impact of TSPO deficiency on human microglia. We used TSPO knockout (TSPO-/-) variants of the human C20 microglia cell line. We found a significant reduction in the TSPO-associated protein VDAC1 in TSPO-/- cells compared to control cells. Moreover, we assessed the impact of TSPO deficiency on calcium levels and the mitochondrial membrane potential. Cytosolic and mitochondrial calcium concentrations were increased in TSPO-/- cell lines, whereas the mitochondrial membrane potential tended to be lower. Assessment of the mitochondrial DNA copy number via RT-PCR revealed a decreased amount of mtDNA in the TSPO-/- cells when compared to controls. Moreover, the metabolic profiles of C20 cells were strongly dependent on the glycolytic pathway. However, TSPO depletion did not affect the cellular metabolic profile. Measurement of the mRNA expression levels of the pro-inflammatory mediators revealed an attenuated response to pro-inflammatory stimuli in TSPO-depleted cells, implying a role for the TSPO protein in the process of microglial polarization.


Asunto(s)
Microglía , Mitocondrias , Receptores de GABA , Humanos , Calcio/metabolismo , Línea Celular , Microglía/metabolismo , Mitocondrias/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
7.
J Biol Chem ; 299(3): 103006, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775128

RESUMEN

Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Cryptosporidium parvum/metabolismo , Criptosporidiosis/parasitología , Criptosporidiosis/prevención & control , Glicosilación , Cryptosporidium/metabolismo , Proteínas Protozoarias/química , Esporozoítos , Trombospondinas/metabolismo
8.
Cell Death Dis ; 14(2): 123, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792599

RESUMEN

Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damage and impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic and persistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated because proteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining the role of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributes to the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing that necroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docile strain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads are not altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, we identified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. This was not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function of RIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to an impaired antiviral immune response and abrogated clearance of chronic LCMV infection.


Asunto(s)
Virus de la Coriomeningitis Linfocítica , Proteínas Quinasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Virus de la Coriomeningitis Linfocítica/metabolismo , Necroptosis , Linfocitos T CD8-positivos/metabolismo , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
Cell Death Differ ; 30(1): 27-36, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35871233

RESUMEN

Caspase-8 transduces signals from death receptor ligands, such as tumor necrosis factor, to drive potent responses including inflammation, cell proliferation or cell death. This is a developmentally essential function because in utero deletion of endothelial Caspase-8 causes systemic circulatory collapse during embryogenesis. Whether endothelial Caspase-8 is also required for cardiovascular patency during adulthood was unknown. To address this question, we used an inducible Cre recombinase system to delete endothelial Casp8 in 6-week-old conditionally gene-targeted mice. Extensive whole body vascular gene targeting was confirmed, yet the dominant phenotype was fatal hemorrhagic lesions exclusively within the small intestine. The emergence of these intestinal lesions was not a maladaptive immune response to endothelial Caspase-8-deficiency, but instead relied upon aberrant Toll-like receptor sensing of microbial commensals and tumor necrosis factor receptor signaling. This lethal phenotype was prevented in compound mutant mice that lacked the necroptotic cell death effector, MLKL. Thus, distinct from its systemic role during embryogenesis, our data show that dysregulated microbial- and death receptor-signaling uniquely culminate in the adult mouse small intestine to unleash MLKL-dependent necroptotic hemorrhage after loss of endothelial Caspase-8. These data support a critical role for Caspase-8 in preserving gut vascular integrity in the face of microbial commensals.


Asunto(s)
Hemorragia , Inflamación , Ratones , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular/genética , Inflamación/metabolismo , Receptores de Muerte Celular/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
10.
Respir Res ; 23(1): 296, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316693

RESUMEN

BACKGROUND: Anticoagulant treatment is recommended for at least three months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related acute pulmonary embolism (PE), but the persistent pulmonary clot burden after that time is unknown. METHODS: Lung perfusion was assessed by ventilation-perfusion (V/Q) SPECT/CT in 20 consecutive patients with SARS-CoV-2-associated acute PE after a minimum of three months anticoagulation therapy in a retrospective observational study. RESULTS: Remaining perfusion defects after a median treatment period of six months were observed in only two patients. All patients (13 men, seven women, mean age 55.6 ± 14.5 years) were on non-vitamin K direct oral anticoagulants (DOACs). No recurrent venous thromboembolism or anticoagulant-related bleeding complications were observed. Among patients with partial clinical recovery, high-risk PE and persistent pulmonary infiltrates were significantly more frequent (p < 0.001, respectively). INTERPRETATION: Temporary DOAC treatment seems to be safe and efficacious for resolving pulmonary clot burden in SARS-CoV-2-associated acute PE. Partial clinical recovery is more likely caused by prolonged SARS-CoV-2-related parenchymal lung damage rather than by persistent pulmonary perfusion defects.


Asunto(s)
COVID-19 , Embolia Pulmonar , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , SARS-CoV-2 , COVID-19/complicaciones , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/tratamiento farmacológico , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Anticoagulantes/uso terapéutico , Enfermedad Aguda , Perfusión
11.
Gastroenterology ; 163(6): 1643-1657.e14, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36037995

RESUMEN

BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.


Asunto(s)
Necroptosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Masculino , Ratones , Animales , Epigénesis Genética , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteínas Quinasas/genética
12.
Mol Psychiatry ; 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732695

RESUMEN

The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder.

13.
Biochem J ; 479(5): 609-628, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244141

RESUMEN

Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.


Asunto(s)
COVID-19/etiología , COVID-19/patología , Antivirales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Humanos , Inflamasomas/fisiología , Interferones/metabolismo , Necroptosis/fisiología , Neutrófilos/patología , Neutrófilos/virología , Piroptosis/fisiología , SARS-CoV-2/patogenicidad , Tratamiento Farmacológico de COVID-19
14.
Cell Host Microbe ; 30(2): 232-247.e6, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34921775

RESUMEN

Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.


Asunto(s)
Toxoplasma , Muerte Celular , Humanos , Interferón gamma/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
15.
Immunity ; 54(8): 1758-1771.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34256013

RESUMEN

Apoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses. We further show that apoptotic pathways can be targeted therapeutically with clinical-stage compounds that antagonize inhibitor of apoptosis (IAP) proteins to promote clearance of M. tuberculosis in mice. These findings reveal that any inhibition of apoptosis by M. tuberculosis is incomplete in vivo, advancing our understanding of host-protective responses to tuberculosis (TB) and revealing host pathways that may be targetable for treatment of disease.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Neutrófilos/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular , Dipéptidos/uso terapéutico , Humanos , Indoles/uso terapéutico , Activación de Linfocitos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Linfocitos T/inmunología , Tiazoles/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico
16.
Mol Microbiol ; 115(5): 916-929, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278047

RESUMEN

Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.


Asunto(s)
Toxoplasma/citología , Toxoplasma/metabolismo , Toxoplasmosis/parasitología , Animales , Movimiento Celular , Ecosistema , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética
17.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735843

RESUMEN

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Necroptosis/inmunología , Piroptosis/inmunología , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 12/deficiencia , Caspasa 12/genética , Caspasa 8/genética , Caspasas Iniciadoras/deficiencia , Caspasas Iniciadoras/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
18.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510070

RESUMEN

A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Microglía/efectos de los fármacos , Purinas/farmacología , Interferencia de ARN , Receptores de GABA/metabolismo , Aminoglutetimida/farmacología , Antiinflamatorios/farmacología , Inhibidores de la Aromatasa/farmacología , Secuencia de Bases , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citocinas/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Fenotipo , Receptores de GABA/genética
19.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323920

RESUMEN

The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. It has been implicated in the regulation of various cellular processes including oxidative stress, proliferation, apoptosis, and steroid hormone biosynthesis. Since the expression of TSPO in activated microglia is upregulated in various neuroinflammatory and neurodegenerative disorders, we set out to examine the role of TSPO in an immortalized human microglia C20 cell line. To this end, we performed a dual approach and used (i) lentiviral shRNA silencing to reduce TSPO expression, and (ii) the CRISPR/Cas9 technology to generate complete TSPO knockout microglia cell lines. Functional characterization of control and TSPO knockdown as well as knockout cells, revealed only low de novo steroidogenesis in C20 cells, which was not dependent on the level of TSPO expression or influenced by the treatment with TSPO-specific ligands. In contrast to TSPO knockdown C20 cells, which did not show altered mitochondrial function, the TSPO deficient knockout cells displayed a significantly decreased mitochondrial membrane potential and cytosolic Ca2+ levels, as well as reduced respiratory function. Performing the rescue experiment by lentiviral overexpression of TSPO in knockout cells, increased oxygen consumption and restored respiratory function. Our study provides further evidence for a significant role of TSPO in cellular and mitochondrial metabolism and demonstrates that different phenotypes of mitochondrial function are dependent on the level of TSPO expression.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Microglía/metabolismo , Receptores de GABA/metabolismo , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Línea Celular , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Fosforilación Oxidativa , Receptores de GABA/deficiencia , Receptores de GABA/genética , Esteroides/metabolismo
20.
Psychoneuroendocrinology ; 106: 65-76, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30954920

RESUMEN

The translocator protein 18 kDa (TSPO), initially characterized as peripheral benzodiazepine receptor, is a conserved outer mitochondrial membrane protein, implicated in cholesterol transport thereby affecting steroid hormone biosynthesis, as well as in general mitochondrial function related to bioenergetics, oxidative stress, and Ca2+ homeostasis. TSPO is highly expressed in steroidogenic tissues such as adrenal glands, but shows low expression in the central nervous system. During various disease states such as inflammation, neurodegeneration or cancer, the expression of mitochondrial TSPO in affected tissues is upregulated. The expression of TSPO can be traced for diagnostic purpose by high affinity radio-ligands. Moreover, the function of TSPO is modulated by synthetic as well as endogenous ligands with agonistic or antagonistic properties. Thus, TSPO ligands serve functions as both important biomarkers and putative therapeutic agents. In the present study, we aimed to characterize the effects of TSPO ligands on mouse BV-2 microglia cells, which express significant levels of TSPO, and analyzed the effect of XBD173, PK11195, and Ro5-4864, as well as the inflammatory reagent Lipopolysaccharides (LPS) on neurosteroid synthesis and on basic mitochondrial functions such as oxidative phosphorylation, mitochondrial membrane potential and Ca2+ homeostasis. Specific TSPO-dependent effects were separated from off-target effects by comparing lentiviral TSPO knockdown with shRNA scramble-controls and wild-type BV-2 cells. Our data demonstrate ligand-specific effects on different cellular functions in a TSPO-dependent or independent manner, providing evidence for both specific TSPO-mediated, as well as off-target effects.


Asunto(s)
Microglía/metabolismo , Mitocondrias/metabolismo , Receptores de GABA/metabolismo , Animales , Benzodiazepinonas/farmacología , Línea Celular , Inflamación/metabolismo , Isoquinolinas/farmacología , Ligandos , Lipopolisacáridos/farmacología , Ratones , Microglía/fisiología , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Neuroesteroides/metabolismo , Purinas/farmacología , Receptores de GABA/fisiología , Receptores de GABA-A/metabolismo , Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...