Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 105(5-1): 054313, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706217

RESUMEN

The event graph representation of temporal networks suggests that the connectivity of temporal structures can be mapped to a directed percolation problem. However, similarly to percolation theory on static networks, this mapping is valid under the approximation that the structure and interaction dynamics of the temporal network are determined by its local properties, and, otherwise, it is maximally random. We challenge these conditions and demonstrate the robustness of this mapping in case of more complicated systems. We systematically analyze random and regular network topologies and heterogeneous link-activation processes driven by bursty renewal or self-exciting processes using numerical simulation and finite-size scaling methods. We find that the critical percolation exponents characterizing the temporal network are not sensitive to many structural and dynamical network heterogeneities, while they recover known scaling exponents characterizing directed percolation on low-dimensional lattices. While it is not possible to demonstrate the validity of this mapping for all temporal network models, our results establish the first batch of evidence supporting the robustness of the scaling relationships in the limited-time reachability of temporal networks.

2.
Phys Rev E ; 105(4-1): 044313, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590624

RESUMEN

Contact tracing via digital tracking applications installed on mobile phones is an important tool for controlling epidemic spreading. Its effectivity can be quantified by modifying the standard methodology for analyzing percolation and connectivity of contact networks. We apply this framework to networks with varying degree distributions, numbers of application users, and probabilities of quarantine failures. Further, we study structured populations with homophily and heterophily and the possibility of degree-targeted application distribution. Our results are based on a combination of explicit simulations and mean-field analysis. They indicate that there can be major differences in the epidemic size and epidemic probabilities which are equivalent in the normal susceptible-infectious-recovered (SIR) processes. Further, degree heterogeneity is seen to be especially important for the epidemic threshold but not as much for the epidemic size. The probability that tracing leads to quarantines is not as important as the application adoption rate. Finally, both strong homophily and especially heterophily with regard to application adoption can be detrimental. Overall, epidemic dynamics are very sensitive to all of the parameter values we tested out, which makes the problem of estimating the effect of digital contact tracing an inherently multidimensional problem.

3.
Phys Rev E ; 101(5-1): 052303, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575201

RESUMEN

Time-limited states characterize many dynamical processes on networks: disease-infected individuals recover after some time, people forget news spreading on social networks, or passengers may not wait forever for a connection. These dynamics can be described as limited-waiting-time processes, and they are particularly important for systems modeled as temporal networks. These processes have been studied via simulations, which is equivalent to repeatedly finding all limited-waiting-time temporal paths from a source node and time. We propose a method yielding an orders-of-magnitude more efficient way of tracking the reachability of such temporal paths. Our method gives simultaneous estimates of the in- or out-reachability (with any chosen waiting-time limit) from every possible starting point and time. It works on very large temporal networks with hundreds of millions of events on current commodity computing hardware. This opens up the possibility to analyze reachability and dynamics of spreading processes on large temporal networks in completely new ways. For example, one can now compute centralities based on global reachability for all events or can find with high probability the infected node and time, which would lead to the largest epidemic outbreak.

4.
PLoS One ; 11(12): e0167546, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911929

RESUMEN

BACKGROUND: Classification of medical sciences into its sub-branches is crucial for optimum administration of healthcare and specialty training. Due to the rapid and continuous evolution of medical sciences, development of unbiased tools for monitoring the evolution of medical disciplines is required. METHODOLOGY/PRINCIPAL FINDINGS: Network analysis was used to explore how the medical sciences have evolved between 1980 and 2015 based on the shared words contained in more than 9 million PubMed abstracts. The k-clique percolation method was used to extract local research communities within the network. Analysis of the shared vocabulary in research papers reflects the trends of collaboration and splintering among different disciplines in medicine. Our model identifies distinct communities within each discipline that preferentially collaborate with other communities within other domains of specialty, and overturns some common perceptions. CONCLUSIONS/SIGNIFICANCE: Our analysis provides a tool to assess growth, merging, splitting and contraction of research communities and can thereby serve as a guide to inform policymakers about funding and training in healthcare.


Asunto(s)
Investigación Biomédica , Vocabulario Controlado , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA