Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36363040

RESUMEN

Beam-column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility under lateral loading and can cause the progressive failure of the entire structure. The joint may fail in the shear prior to the connecting beam and column elements. Therefore, several modeling techniques have been devised in the past to capture the non-linear response of such joints. Modeling techniques used to capture the non-linear response of reinforced-concrete-beam-column joints range from simplified lumped plasticity models to detailed fiber-based finite element (FE) models. The macro-modeling technique for joint modeling is highly efficient in terms of the computational effort, analysis time, and computer memory requirements, and is one of the most widely used modeling techniques. The non-linear shear response of the joint panel and interface bond-slip mechanism are concentrated in zero-length linear and rotational springs while the connecting elements are modeled through elastic elements. The shear response of joint panels has also been captured through rigid panel boundary elements with rotational springs. The computational efficiency of these models is significantly high compared to continuum models, as each joint act as a separate supe-element. This paper aims to provide an up-to-date review of macro-modeling techniques for the analysis and assessment of RC-beam-column connections subjected to lateral loads. A thorough understanding of existing models is necessary for developing new mechanically adequate and computationally efficient joint models for the analysis and assessment of deficient RC connections. This paper will provide a basis for further research on the topic and will assist in the modification and optimization of existing models. As each model is critically evaluated, and their respective capabilities and limitations are explored, it should help researchers to improve and build on modeling techniques both in terms of accuracy and computational efficiency.

2.
Materials (Basel) ; 15(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591549

RESUMEN

Steel fibers are widely extracted from scrap tyres, causing environmental concerns. This paper presents the use of steel fibers in variable proportions extracted from scrap tyres. The enhancement of the confinement was envisaged through the addition of steel fibers obtained from scrap tyres. The study included an experimental program for the development of constitutive material models for ordinary Portland cement (OPC) concrete and concrete with added steel fibers. A mix design was carried out for OPC, targeting a compressive strength of 3000 psi. Steel fibers were added to OPC in ratios of 1.0% to 3.0%, with an increment of 0.5%. Concrete columns, with cross-sectional dimensions of 6 × 6 inches and a length of 30 inches, were cast with both OPC and fiber-reinforced concrete. The column confinement was evaluated with a different spacing of ties (3- and 4-inch center-to-center). Compression tests on the concrete columns indicate that the addition of steel fibers to a concrete matrix results in an appreciable increase in strength and ductility. Overall, increasing the percentage of steel fibers increased the compression strength and the ductility of concrete. The maximum strain in the concrete containing 2.5% steel fibers increased by 285% as compared to the concrete containing 1% of steel fibers. An optimum percentage of 2.5% steel fibers added to the concrete resulted in a 39% increase in compressive strength, accompanied by a significant improvement in ductility. The optimum content of steel fibers, when used in confined columns, showed that confined compression strength increased with the addition of steel fibers. However, it is recommended that additional columns on the basis of the optimum steel fiber content shall be tested to evaluate their effectiveness in reducing the stirrup spacing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...