Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-38684319

RESUMEN

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

3.
Magn Reson Med ; 91(5): 2074-2088, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38192239

RESUMEN

PURPOSE: Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling. METHODS: We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. RESULTS: Voxel values within MRF-derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor-reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. CONCLUSION: MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Magn Reson Imaging ; 59(5): 1758-1768, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37515516

RESUMEN

PURPOSE: To explore whether MR fingerprinting (MRF) scans provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure (POE). STUDY TYPE: Prospective. POPULATION: 13 infants with POE (3 male; 12 newborns (age 7-65 days) and 1 infant aged 9-months). FIELD STRENGTH/SEQUENCE: 3T, 3D T1-weighted MPRAGE, 3D T2-weighted TSE and MRF sequences. ASSESSMENT: The image quality of MRF and MRI was assessed in a fully crossed, multiple-reader, multiple-case study. Sixteen image quality features in three types-image artifacts, structure and myelination visualization-were ranked by four neuroradiologists (8, 7, 5, and 8 years of experience respectively), using a 3-point scale. MRF T1 and T2 values in 8 white matter brain regions were compared between babies younger than 1 month and babies between 1 and 2 months. STATISTICAL TESTS: Generalized estimating equations model to test the significance of differences of regional T1 and T2 values of babies under 1 month and those older. MRI and MRF image quality was assessed using Gwet's second order auto-correlation coefficient (AC2) with confidence levels. The Cochran-Mantel-Haenszel test was used to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. A P value <0.05 was considered statistically significant. RESULTS: The MRF of two infants were excluded in T1 and T2 value analysis due to severe motion artifact but were included in the image quality assessment. In infants under 1 month of age (N = 6), the T1 and T2 values were significantly higher compared to those between 1 and 2 months of age (N = 4). MRF images showed significantly higher image quality ratings in all three feature types compared to MRI images. CONCLUSIONS: MR Fingerprinting scans have potential to be a motion-robust and efficient method for nonsedated infants. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Analgésicos Opioides , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Humanos , Masculino , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Prospectivos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
5.
Invest Radiol ; 59(5): 359-371, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812483

RESUMEN

OBJECTIVE: Given the limited repeatability and reproducibility of radiomic features derived from weighted magnetic resonance imaging (MRI), there may be significant advantages to using radiomics in conjunction with quantitative MRI. This study introduces a novel physics-informed discretization (PID) method for reproducible radiomic feature extraction and evaluates its performance using quantitative MRI sequences including magnetic resonance fingerprinting (MRF) and apparent diffusion coefficient (ADC) mapping. MATERIALS AND METHODS: A multiscanner, scan-rescan dataset comprising whole-brain 3D quantitative (MRF T1, MRF T2, and ADC) and weighted MRI (T1w MPRAGE, T2w SPACE, and T2w FLAIR) from 5 healthy subjects was prospectively acquired. Subjects underwent 2 repeated acquisitions on 3 distinct 3 T scanners each, for a total of 6 scans per subject (30 total scans). First-order statistical (n = 23) and second-order texture (n = 74) radiomic features were extracted from 56 brain tissue regions of interest using the proposed PID method (for quantitative MRI) and conventional fixed bin number (FBN) discretization (for quantitative MRI and weighted MRI). Interscanner radiomic feature reproducibility was measured using the intraclass correlation coefficient (ICC), and the effect of image sequence (eg, MRF T1 vs T1w MPRAGE), as well as image discretization method (ie, PID vs FBN), on radiomic feature reproducibility was assessed using repeated measures analysis of variance. The robustness of PID and FBN discretization to segmentation error was evaluated by simulating segmentation differences in brainstem regions of interest. Radiomic features with ICCs greater than 0.75 following simulated segmentation were determined to be robust to segmentation. RESULTS: First-order features demonstrated higher reproducibility in quantitative MRI than weighted MRI sequences, with 30% (n = 7/23) features being more reproducible in MRF T1 and MRF T2 than weighted MRI. Gray level co-occurrence matrix (GLCM) texture features extracted from MRF T1 and MRF T2 were significantly more reproducible using PID compared with FBN discretization; for all quantitative MRI sequences, PID yielded the highest number of texture features with excellent reproducibility (ICC > 0.9). Comparing texture reproducibility of quantitative and weighted MRI, a greater proportion of MRF T1 (n = 225/370, 61%) and MRF T2 (n = 150/370, 41%) texture features had excellent reproducibility (ICC > 0.9) compared with T1w MPRAGE (n = 148/370, 40%), ADC (n = 115/370, 32%), T2w SPACE (n = 98/370, 27%), and FLAIR (n = 102/370, 28%). Physics-informed discretization was also more robust than FBN discretization to segmentation error, as 46% (n = 103/222, 46%) of texture features extracted from quantitative MRI using PID were robust to simulated 6 mm segmentation shift compared with 19% (n = 42/222, 19%) of weighted MRI texture features extracted using FBN discretization. CONCLUSIONS: The proposed PID method yields radiomic features extracted from quantitative MRI sequences that are more reproducible and robust than radiomic features extracted from weighted MRI using conventional (FBN) discretization approaches. Quantitative MRI sequences also demonstrated greater scan-rescan robustness and first-order feature reproducibility than weighted MRI.


Asunto(s)
Imagen por Resonancia Magnética , Radiómica , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
6.
ArXiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37426455

RESUMEN

BACKGROUND: A noninvasive and sensitive imaging tool is needed to assess the fast-evolving baby brain. However, using MRI to study non-sedated babies faces roadblocks, including high scan failure rates due to subjects motion and the lack of quantitative measures for assessing potential developmental delays. This feasibility study explores whether MR Fingerprinting scans can provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure, presenting a viable alternative to clinical MR scans. ASSESSMENT: MRF image quality was compared to pediatric MRI scans using a fully crossed, multiple reader multiple case study. The quantitative T1 and T2 values were used to assess brain tissue changes between babies younger than one month and babies between one and two months. STATISTICAL TESTS: Generalized estimating equations (GEE) model was performed to test the significant difference of the T1 and T2 values from eight white matter regions of babies under one month and those are older. MRI and MRF image quality were assessed using Gwets second order auto-correlation coefficient (AC2) with its confidence levels. We used the Cochran-Mantel-Haenszel test to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. RESULTS: In infants under one month of age, the T1 and T2 values are significantly higher (p<0.005) compared to those between one and two months. A multiple-reader and multiple-case study showed superior image quality ratings in anatomical features from the MRF images than the MRI images. CONCLUSIONS: This study suggested that the MR Fingerprinting scans offer a motion-robust and efficient method for non-sedated infants, delivering superior image quality than clinical MRI scans and additionally providing quantitative measures to assess brain development.

7.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37468750

RESUMEN

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/genética , Imagen por Resonancia Magnética/métodos , Mutación , Organización Mundial de la Salud
8.
Eur Radiol ; 33(2): 836-844, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35999374

RESUMEN

OBJECTIVES: To test the feasibility of using 3D MRF maps with radiomics analysis and machine learning in the characterization of adult brain intra-axial neoplasms. METHODS: 3D MRF acquisition was performed on 78 patients with newly diagnosed brain tumors including 33 glioblastomas (grade IV), 6 grade III gliomas, 12 grade II gliomas, and 27 patients with brain metastases. Regions of enhancing tumor, non-enhancing tumor, and peritumoral edema were segmented and radiomics analysis with gray-level co-occurrence matrices and gray-level run-length matrices was performed. Statistical analysis was performed to identify features capable of differentiating tumors based on type, grade, and isocitrate dehydrogenase (IDH1) status. Receiver operating curve analysis was performed and the area under the curve (AUC) was calculated for tumor classification and grading. For gliomas, Kaplan-Meier analysis for overall survival was performed using MRF T1 features from enhancing tumor region. RESULTS: Multiple MRF T1 and T2 features from enhancing tumor region were capable of differentiating glioblastomas from brain metastases. Although no differences were identified between grade 2 and grade 3 gliomas, differentiation between grade 2 and grade 4 gliomas as well as between grade 3 and grade 4 gliomas was achieved. MRF radiomics features were also able to differentiate IDH1 mutant from the wild-type gliomas. Radiomics T1 features for enhancing tumor region in gliomas correlated to overall survival (p < 0.05). CONCLUSION: Radiomics analysis of 3D MRF maps allows differentiating glioblastomas from metastases and is capable of differentiating glioblastomas from metastases and characterizing gliomas based on grade, IDH1 status, and survival. KEY POINTS: • 3D MRF data analysis using radiomics offers novel tissue characterization of brain tumors. • 3D MRF with radiomics offers glioma characterization based on grade, IDH1 status, and overall patient survival.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Estudios de Factibilidad , Imagen por Resonancia Magnética , Neoplasias Encefálicas/patología , Glioma/patología , Espectroscopía de Resonancia Magnética , Isocitrato Deshidrogenasa/genética , Mutación , Clasificación del Tumor
9.
Eur J Nucl Med Mol Imaging ; 48(13): 4189-4200, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34037831

RESUMEN

Magnetic resonance fingerprinting (MRF) is an evolving quantitative MRI framework consisting of unique data acquisition, processing, visualization, and interpretation steps. MRF is capable of simultaneously producing multiple high-resolution property maps including T1, T2, M0, ADC, and T2* measurements. While a relatively new technology, MRF has undergone rapid development for a variety of clinical applications from brain tumor characterization and epilepsy imaging to characterization of prostate cancer, cardiac imaging, among others. This paper will provide a brief overview of current state of MRF technology including highlights of technical and clinical advances. We will conclude with a brief discussion of the challenges that need to be overcome to establish MRF as a quantitative imaging biomarker.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Encéfalo , Técnicas de Imagen Cardíaca , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Fantasmas de Imagen
10.
Radiol Clin North Am ; 59(3): 441-455, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33926688

RESUMEN

The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Diagnóstico por Imagen/métodos , Glioma/diagnóstico por imagen , Glioma/genética , Genómica de Imágenes/métodos , Encéfalo/diagnóstico por imagen , Humanos
11.
Eur J Nucl Med Mol Imaging ; 48(3): 683-693, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32979059

RESUMEN

PURPOSE: This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS: Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS: Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION: Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
12.
Neurooncol Adv ; 2(1): vdaa049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642702

RESUMEN

The use of magnetic resonance imaging (MRI) in healthcare and the emergence of radiology as a practice are both relatively new compared with the classical specialties in medicine. Having its naissance in the 1970s and later adoption in the 1980s, the use of MRI has grown exponentially, consequently engendering exciting new areas of research. One such development is the use of computational techniques to analyze MRI images much like the way a radiologist would. With the advent of affordable, powerful computing hardware and parallel developments in computer vision, MRI image analysis has also witnessed unprecedented growth. Due to the interdisciplinary and complex nature of this subfield, it is important to survey the current landscape and examine the current approaches for analysis and trend trends moving forward.

14.
JCO Clin Cancer Inform ; 4: 234-244, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32191542

RESUMEN

PURPOSE: To construct a multi-institutional radiomic model that supports upfront prediction of progression-free survival (PFS) and recurrence pattern (RP) in patients diagnosed with glioblastoma multiforme (GBM) at the time of initial diagnosis. PATIENTS AND METHODS: We retrospectively identified data for patients with newly diagnosed GBM from two institutions (institution 1, n = 65; institution 2, n = 15) who underwent gross total resection followed by standard adjuvant chemoradiation therapy, with pathologically confirmed recurrence, sufficient follow-up magnetic resonance imaging (MRI) scans to reliably determine PFS, and available presurgical multiparametric MRI (MP-MRI). The advanced software suite Cancer Imaging Phenomics Toolkit (CaPTk) was leveraged to analyze standard clinical brain MP-MRI scans. A rich set of imaging features was extracted from the MP-MRI scans acquired before the initial resection and was integrated into two distinct imaging signatures for predicting mean shorter or longer PFS and near or distant RP. The predictive signatures for PFS and RP were evaluated on the basis of different classification schemes: single-institutional analysis, multi-institutional analysis with random partitioning of the data into discovery and replication cohorts, and multi-institutional assessment with data from institution 1 as the discovery cohort and data from institution 2 as the replication cohort. RESULTS: These predictors achieved cross-validated classification performance (ie, area under the receiver operating characteristic curve) of 0.88 (single-institution analysis) and 0.82 to 0.83 (multi-institution analysis) for prediction of PFS and 0.88 (single-institution analysis) and 0.56 to 0.71 (multi-institution analysis) for prediction of RP. CONCLUSION: Imaging signatures of presurgical MP-MRI scans reveal relatively high predictability of time and location of GBM recurrence, subject to the patients receiving standard first-line chemoradiation therapy. Through its graphical user interface, CaPTk offers easy accessibility to advanced computational algorithms for deriving imaging signatures predictive of clinical outcome and could similarly be used for a variety of radiomic and radiogenomic analyses.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Glioblastoma/mortalidad , Interpretación de Imagen Asistida por Computador/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Recurrencia Local de Neoplasia/mortalidad , Fenómica/métodos , Programas Informáticos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Supervivencia sin Progresión , Curva ROC , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
15.
JAMA Oncol ; 6(4): 495-503, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027343

RESUMEN

Importance: Per the World Health Organization 2016 integrative classification, newly diagnosed glioblastomas are separated into isocitrate dehydrogenase gene 1 or 2 (IDH)-wild-type and IDH-mutant subtypes, with median patient survival of 1.2 and 3.6 years, respectively. Although maximal resection of contrast-enhanced (CE) tumor is associated with longer survival, the prognostic importance of maximal resection within molecular subgroups and the potential importance of resection of non-contrast-enhanced (NCE) disease is poorly understood. Objective: To assess the association of resection of CE and NCE tumors in conjunction with molecular and clinical information to develop a new road map for cytoreductive surgery. Design, Setting, and Participants: This retrospective, multicenter cohort study included a development cohort from the University of California, San Francisco (761 patients diagnosed from January 1, 1997, through December 31, 2017, with 9.6 years of follow-up) and validation cohorts from the Mayo Clinic (107 patients diagnosed from January 1, 2004, through December 31, 2014, with 5.7 years of follow-up) and the Ohio Brain Tumor Study (99 patients with data collected from January 1, 2008, through December 31, 2011, with a median follow-up of 10.9 months). Image accessors were blinded to patient groupings. Eligible patients underwent surgical resection for newly diagnosed glioblastoma and had available survival, molecular, and clinical data and preoperative and postoperative magnetic resonance images. Data were analyzed from November 15, 2018, to March 15, 2019. Main Outcomes and Measures: Overall survival. Results: Among the 761 patients included in the development cohort (468 [61.5%] men; median age, 60 [interquartile range, 51.6-67.7] years), younger patients with IDH-wild-type tumors and aggressive resection of CE and NCE tumors had survival similar to that of patients with IDH-mutant tumors (median overall survival [OS], 37.3 [95% CI, 31.6-70.7] months). Younger patients with IDH-wild-type tumors and reduction of CE tumor but residual NCE tumors fared worse (median OS, 16.5 [95% CI, 14.7-18.3] months). Older patients with IDH-wild-type tumors benefited from reduction of CE tumor (median OS, 12.4 [95% CI, 11.4-14.0] months). The results were validated in the 2 external cohorts. The association between aggressive CE and NCE in patients with IDH-wild-type tumors was not attenuated by the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase. Conclusions and Relevance: This study confirms an association between maximal resection of CE tumor and OS in patients with glioblastoma across all subgroups. In addition, maximal resection of NCE tumor was associated with longer OS in younger patients, regardless of IDH status, and among patients with IDH-wild-type glioblastoma regardless of the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase. These conclusions may help reassess surgical strategies for individual patients with newly diagnosed glioblastoma.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Isocitrato Deshidrogenasa/genética , Adolescente , Adulto , Anciano , Antineoplásicos Alquilantes/administración & dosificación , Biomarcadores de Tumor/genética , Preescolar , Estudios de Cohortes , Medios de Contraste/administración & dosificación , Metilación de ADN/efectos de los fármacos , Femenino , Glioblastoma/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/administración & dosificación , Masculino , Persona de Mediana Edad , Ohio/epidemiología , Pronóstico , Regiones Promotoras Genéticas/efectos de los fármacos , Estudios Retrospectivos , Temozolomida/administración & dosificación
16.
Neurooncol Adv ; 2(Suppl 4): iv22-iv34, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33521638

RESUMEN

BACKGROUND: Gliomas represent a biologically heterogeneous group of primary brain tumors with uncontrolled cellular proliferation and diffuse infiltration that renders them almost incurable, thereby leading to a grim prognosis. Recent comprehensive genomic profiling has greatly elucidated the molecular hallmarks of gliomas, including the mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), loss of chromosomes 1p and 19q (1p/19q), and epidermal growth factor receptor variant III (EGFRvIII). Detection of these molecular alterations is based on ex vivo analysis of surgically resected tissue specimen that sometimes is not adequate for testing and/or does not capture the spatial tumor heterogeneity of the neoplasm. METHODS: We developed a method for noninvasive detection of radiogenomic markers of IDH both in lower-grade gliomas (WHO grade II and III tumors) and glioblastoma (WHO grade IV), 1p/19q in IDH-mutant lower-grade gliomas, and EGFRvIII in glioblastoma. Preoperative MRIs of 473 glioma patients from 3 of the studies participating in the ReSPOND consortium (collection I: Hospital of the University of Pennsylvania [HUP: n = 248], collection II: The Cancer Imaging Archive [TCIA; n = 192], and collection III: Ohio Brain Tumor Study [OBTS, n = 33]) were collected. Neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk), a modular platform available for cancer imaging analytics and machine learning, was leveraged to extract histogram, shape, anatomical, and texture features from delineated tumor subregions and to integrate these features using support vector machine to generate models predictive of IDH, 1p/19q, and EGFRvIII. The models were validated using 3 configurations: (1) 70-30% training-testing splits or 10-fold cross-validation within individual collections, (2) 70-30% training-testing splits within merged collections, and (3) training on one collection and testing on another. RESULTS: These models achieved a classification accuracy of 86.74% (HUP), 85.45% (TCIA), and 75.15% (TCIA) in identifying EGFRvIII, IDH, and 1p/19q, respectively, in configuration I. The model, when applied on combined data in configuration II, yielded a classification success rate of 82.50% in predicting IDH mutation (HUP + TCIA + OBTS). The model when trained on TCIA dataset yielded classification accuracy of 84.88% in predicting IDH in HUP dataset. CONCLUSIONS: Using machine learning algorithms, high accuracy was achieved in the prediction of IDH, 1p/19q, and EGFRvIII mutation. Neuro-CaPTk encompasses all the pipelines required to replicate these analyses in multi-institutional settings and could also be used for other radio(geno)mic analyses.

17.
Pediatr Neurosurg ; 54(5): 310-318, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31416081

RESUMEN

OBJECT: Magnetic resonance fingerprinting (MRF) allows rapid, simultaneous mapping of T1 and T2 relaxation times and may be an important diagnostic tool to measure tissue characteristics in pediatric brain tumors. We examined children and young adults with primary brain tumors to determine whether MRF can discriminate tumor from normal-appearing white matter and distinguish tumor grade. METHODS: MRF was performed in 23 patients (14 children and 9 young adults) with brain tumors (19 low-grade glioma, 4 high-grade tumors). T1 and T2 values were recorded in regions of solid tumor (ST), peritumoral white matter (PWM), and contralateral white matter (CWM). Nonparametric tests were used for comparison between groups and regions. RESULTS: Median scan time for MRF and a sequence for tumor localization was 11 min. MRF-derived T1 and T2 values distinguished ST from CWM (T1: 1,444 ± 254 ms vs. 938 ± 96 ms, p = 0.0002; T2: 61 ± 22 ms vs. 38 ± 9 ms, p = 0.0003) and separated high-grade tumors from low-grade tumors (T1: 1,863 ± 70 ms vs. 1,355 ± 187 ms, p = 0.007; T2: 90 ± 13 ms vs. 56 ± 19 ms, p = 0.013). PWM was distinct from CWM (T1: 1,261 ± 359 ms vs. 933 ± 104 ms, p = 0.0008; T2: 65 ± 51 ms vs. 38 ± 8 ms, p = 0.008), as well as from tumor (T1: 1,261 ± 371 ms vs. 1,462 ± 248 ms, p = 0.047). CONCLUSIONS: MRF is a fast sequence that can rapidly distinguish important tissue components in pediatric brain tumor patients. MRF-derived T1 and T2 distinguished tumor from normal-appearing white matter, differentiated tumor grade, and found abnormalities in peritumoral regions. MRF may be useful for rapid quantitative measurement of tissue characteristics and distinguish tumor grade in children and young adults with brain tumors.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Neoplasias Encefálicas/terapia , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Clasificación del Tumor/métodos , Estudios Prospectivos , Adulto Joven
18.
Radiology ; 292(3): 685-694, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31335285

RESUMEN

BackgroundPreliminary studies have shown that MR fingerprinting-based relaxometry combined with apparent diffusion coefficient (ADC) mapping can be used to differentiate normal peripheral zone from prostate cancer and prostatitis. The utility of relaxometry and ADC mapping for the transition zone (TZ) is unknown.PurposeTo evaluate the utility of MR fingerprinting combined with ADC mapping for characterizing TZ lesions.Materials and MethodsTZ lesions that were suspicious for cancer in men who underwent MRI with T2-weighted imaging and ADC mapping (b values, 50-1400 sec/mm2), MR fingerprinting with steady-state free precession, and targeted biopsy (60 in-gantry and 15 cognitive targeting) between September 2014 and August 2018 in a single university hospital were retrospectively analyzed. Two radiologists blinded to Prostate Imaging Reporting and Data System (PI-RADS) scores and pathologic diagnosis drew regions of interest on cancer-suspicious lesions and contralateral visually normal TZs (NTZs) on MR fingerprinting and ADC maps. Linear mixed models compared two-reader means of T1, T2, and ADC. Generalized estimating equations logistic regression analysis was used to evaluate both MR fingerprinting and ADC in differentiating NTZ, cancers and noncancers, clinically significant (Gleason score ≥ 7) cancers from clinically insignificant lesions (noncancers and Gleason 6 cancers), and characterizing PI-RADS version 2 category 3 lesions.ResultsIn 67 men (mean age, 66 years ± 8 [standard deviation]) with 75 lesions, targeted biopsy revealed 37 cancers (six PI-RADS category 3 cancers and 31 PI-RADS category 4 or 5 cancers) and 38 noncancers (31 PI-RADS category 3 lesions and seven PI-RADS category 4 or 5 lesions). The T1, T2, and ADC of NTZ (1800 msec ± 150, 65 msec ± 22, and [1.13 ± 0.19] × 10-3 mm2/sec, respectively) were higher than those in cancers (1450 msec ± 110, 36 msec ± 11, and [0.57 ± 0.13] × 10-3 mm2/sec, respectively; P < .001 for all). The T1, T2, and ADC in cancers were lower than those in noncancers (1620 msec ± 120, 47 msec ± 16, and [0.82 ± 0.13] × 10-3 mm2/sec, respectively; P = .001 for T1 and ADC and P = .03 for T2). The area under the receiver operating characteristic curve (AUC) for T1 plus ADC was 0.94 for separation. T1 and ADC in clinically significant cancers (1440 msec ± 140 and [0.58 ± 0.14] × 10-3 mm2/sec, respectively) were lower than those in clinically insignificant lesions (1580 msec ± 120 and [0.75 ± 0.17] × 10-3 mm2/sec, respectively; P = .001 for all). The AUC for T1 plus ADC was 0.81 for separation. Within PI-RADS category 3 lesions, T1 and ADC of cancers (1430 msec ± 220 and [0.60 ± 0.17] × 10-3 mm2/sec, respectively) were lower than those of noncancers (1630 msec ± 120 and [0.81 ± 0.13] × 10-3 mm2/sec, respectively; P = .006 for T1 and P = .004 for ADC). The AUC for T1 was 0.79 for differentiating category 3 lesions.ConclusionMR fingerprinting-based relaxometry combined with apparent diffusion coefficient mapping may improve transition zone lesion characterization.© RSNA, 2019Online supplemental material is available for this article.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Prostatitis/diagnóstico por imagen , Anciano , Diagnóstico Diferencial , Humanos , Masculino , Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
NMR Biomed ; 32(5): e4082, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30821878

RESUMEN

Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that maps multiple tissue properties through pseudorandom signal excitation and dictionary-based reconstruction. The aim of this study is to estimate and validate partial volumes from MRF signal evolutions (PV-MRF), and to characterize possible sources of error. Partial volume model inversion (pseudoinverse) and dictionary-matching approaches to calculate brain tissue fractions (cerebrospinal fluid, gray matter, white matter) were compared in a numerical phantom and seven healthy subjects scanned at 3 T. Results were validated by comparison with ground truth in simulations and ROI analysis in vivo. Simulations investigated tissue fraction errors arising from noise, undersampling artifacts, and model errors. An expanded partial volume model was investigated in a brain tumor patient. PV-MRF with dictionary matching is robust to noise, and estimated tissue fractions are sensitive to model errors. A 6% error in pure tissue T1 resulted in average absolute tissue fraction error of 4% or less. A partial volume model within these accuracy limits could be semi-automatically constructed in vivo using k-means clustering of MRF-mapped relaxation times. Dictionary-based PV-MRF robustly identifies pure white matter, gray matter and cerebrospinal fluid, and partial volumes in subcortical structures. PV-MRF could also estimate partial volumes of solid tumor and peritumoral edema. We conclude that PV-MRF can attribute subtle changes in relaxation times to altered tissue composition, allowing for quantification of specific tissues which occupy a fraction of a voxel.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Adulto Joven
20.
Radiol Case Rep ; 13(1): 92-95, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29487642

RESUMEN

Brown syndrome is characterized by upward gaze impairment while the eye is in adduction. It is caused by abnormalities involving the superior oblique tendon-trochlea complex. Imaging can help confirm the diagnosis, shed light on its etiology, and determine the best course of treatment. However, reports of magnetic resonance imaging findings of acquired Brown syndrome are scarce in the literature. Here, we describe magnetic resonance imaging features of 2 cases of acquired Brown syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...