Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 395: 130363, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253244

RESUMEN

Rice husk, rich carbon content, is an agricultural waste produced globally at an amount of 120 million tons annually, and it has high potential as a biorefinery feedstock. Herein, we investigated the feasibility of producing various products as D-psicose, bioethanol and lactic acid from rice husk (RH) through a biorefinery process. Alkali-hydrogen peroxide-acetic acid pretreatment of RH effectively removed lignin and silica, resulting in enzymatic hydrolysis yield of approximately 86.3% under optimal hydrolysis conditions. By using xylose isomerase as well as D-psicose-3-epimerase with borate, glucose present in the RH hydrolysate was converted into D-psicose with a 40.6% conversion yield in the presence of borate. Furthermore, bioethanol (85.4%) and lactic acid (92.5%) were successfully produced from the RH hydrolysate. This study confirmed the high potential of RH as a biorefinery feedstock, and it is expected that various platform chemicals and value-added products can be produced using RH.


Asunto(s)
Oryza , Oryza/química , Boratos , Ácido Láctico , Fructosa , Hidrólisis
2.
Biotechnol J ; 19(1): e2300309, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180273

RESUMEN

Corynebacterium glutamicum is a useful microbe that can be used for producing succinic acid under anaerobic conditions. In this study, we generated a knock-out mutant of the lactate dehydrogenase 1 gene (ΔldhA-6) and co-expressed the succinic acid transporter (Psod:SucE- ΔldhA) using the CRISPR-Cpf1 genome editing system. The highly efficient HPAC (hydrogen peroxide and acetic acid) pretreatment method was employed for the enzymatic hydrolysis of softwood (Pinus densiflora) and subsequently utilized for production of succinic acid. Upon evaluating a 1%-5% hydrolysate concentration range, optimal succinic acid production with the ΔldhA mutant was achieved at a 4% hydrolysate concentration. This resulted in 14.82 g L-1 succinic acid production over 6 h. No production of acetic acid and lactic acid was detected during the fermentation. The co-expression transformant, [Psod:SucE-ΔldhA] produced 17.70 g L-1 succinic acid in 6 h. In the fed-batch system, 39.67 g L-1 succinic acid was produced over 48 h. During the fermentation, the strain consumed 100% and 73% of glucose and xylose, respectively. The yield of succinic acid from the sugars consumed was approximately 0.77 g succinic acid/g sugars. These results indicate that the production of succinic acid from softwood holds potential applications in alternative biochemical processes.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Ácido Succínico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fermentación , Glucosa , Acetatos
3.
Molecules ; 28(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110796

RESUMEN

Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.


Asunto(s)
Antioxidantes , Polifenoles , Lignina , Flavonoides , Cafeína , Residuos/análisis
4.
Environ Sci Ecotechnol ; 15: 100238, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36785801

RESUMEN

The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production. Here, conversion of cotton-based, colored cotton-based, and blended cotton-polyethylene terephthalate (PET) textile waste materials into value-added chemicals (bioethanol, sorbitol, lactic acid, terephthalic acid (TPA), and ethylene glycol (EG)) via enzymatic hydrolysis and fermentation was investigated. In order to enhance the efficiency of enzymatic saccharification, effective pretreatment methods for each type of textile waste were developed, respectively. A high glucose yield of 99.1% was obtained from white cotton-based textile waste after NaOH pretreatment. Furthermore, the digestibility of the cellulose in colored cotton-based textile wastes was increased 1.38-1.75 times because of the removal of dye materials by HPAC-NaOH pretreatment. The blended cotton-PET samples showed good hydrolysis efficiency following PET removal via NaOH-ethanol pretreatment, with a glucose yield of 92.49%. The sugar content produced via enzymatic hydrolysis was then converted into key platform chemicals (bioethanol, sorbitol, and lactic acid) via fermentation or hydrogenation. The maximum ethanol yield was achieved with the white T-shirt sample (537 mL/kg substrate), which was 3.2, 2.1, and 2.6 times higher than those obtained with rice straw, pine wood, and oak wood, respectively. Glucose was selectively converted into sorbitol and LA at a yield of 70% and 83.67%, respectively. TPA and EG were produced from blended cotton-PET via NaOH-ethanol pretreatment. The integrated biorefinery process proposed here demonstrates significant potential for valorization of textile waste.

5.
Bioresour Technol ; 372: 128694, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731613

RESUMEN

Herein, we investigated the possibility of co-producing xylo-oligosaccharides (XOSs) from bamboo, as value-added products, along with succinic and lactic acids, as platform chemicals. Xylan was extracted from bamboo using the alkali method under mild conditions. From xylan, XOSs were produced by partial enzymatic hydrolysis at a conversion rate of 83.9%, and all reaction conditions resulted in similar degrees of polymerization. Hydrogen peroxide-acetic acid (HPAC) pretreatment effectively removed lignin from NaOH-treated bamboo, and the enzymatic hydrolytic yield of NaOH and HPAC-treated bamboo was 84.3% of the theoretical yield. The production of succinic and lactic acids from the hydrolysate resulted in conversion rates of approximately 63.2% and 91.3% of the theoretical yield using Corynebacterium glutamicum Δldh and Actinobacillus succinogenes, respectively, under facultative anaerobic conditions. This study demonstrates that bamboo has a high potential to produce value-added products using a biorefinery process and is an alternative resource for compounds typically derived from petroleum.


Asunto(s)
Ácido Láctico , Ácido Succínico , Fermentación , Ácido Succínico/química , Hidróxido de Sodio , Xilanos , Oligosacáridos , Hidrólisis , Peróxido de Hidrógeno
6.
Polymers (Basel) ; 14(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012188

RESUMEN

Cellulase adsorption onto lignin decreases the productivity of enzymatic hydrolysis of lignocellulosic biomass. Here, adsorption of enzymes onto different types of lignin was investigated, and the five major enzymes-cellobiohydrolases (CBHs), endoglucanase (Cel7B), ß-glucosidase (Cel3A), xylanase (XYNIV), and mannanase (Man5A)-in a cellulase cocktail obtained from Trichoderma reesei were individually analyzed through SDS-PAGE and zymogram assay. Lignin was isolated from woody (oak and pine lignin) and herbaceous (rice straw and kenaf lignin) plants. The relative adsorption of CBHs compared to the control was in the range of 14.15-18.61%. The carbohydrate binding motif (CBM) of the CBHs contributed to higher adsorption levels in oak and kenaf lignin, compared to those in pine and rice lignin. The adsorption of endoglucanase (Cel7B) by herbaceous plant lignin was two times higher than that of woody lignin, whereas XYNIV showed the opposite pattern. ß-glucosidase (Cel3A) displayed the highest and lowest adsorption ratios on rice straw and kenaf lignin, respectively. Mannanase (Man5A) was found to have the lowest adsorption ratio on pine lignin. Our results showed that the hydrophobic properties of CBM and the enzyme structures are key factors in adsorption onto lignin, whereas the properties of specific lignin types indirectly affect adsorption.

7.
Bioresour Technol ; 346: 126618, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954357

RESUMEN

Spent coffee grounds (SCG) are inexpensive materials with a complex composition that makes them promising feedstocks for a biorefinery.Here, conversion of SCG into a wide range of high value-added products (coffee oil, bio-ethanol, D-mannose, manno-oligosaccharide (MOS), cafestol and kahweol) using a novel integrated system was evaluated. The process involves oil extraction, MOS production by mannanase obtained from Penicillium purpurogenum, NaOH (Na) and hydrogen peroxide (HP) pretreatment for the degradation of lignin and phenolic compounds, diterpenes extraction, enzymatic hydrolysis, and fermentation, which can be performed using environmentally friendly technologies. Approximately 97 mL of coffee oil, 164 g of D-mannose, 102 g of MOS, 99 g of bioethanol and a dash of cafestol/kahweol were produced from 1 kg of dry SCG. Producing high-value co-products from SCG using an integrated approach as demonstrated here may be an efficient strategy to reduce waste generation, while improving the economics of the biorefinery production process.


Asunto(s)
Café , Etanol , Fermentación , Hidrólisis , beta-Manosidasa
8.
Front Plant Sci ; 12: 696199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262588

RESUMEN

Lignocellulosic biomass from plants has been used as a biofuel source and the potent acidic endoglucanase GtCel12A has been isolated from Gloeophyllum trabeum, a filamentous fungus. In this study, we established a plant-based platform for the production of active GtCel12A fused to family 3 cellulose-binding module (CBM3). We used the signal sequence of binding immunoglobulin protein (BiP) and the endoplasmic reticulum (ER) retention signal for the accumulation of the produced GtCel12A in the ER. To achieve enhanced enzyme expression, we incorporated the M-domain of the human receptor-type tyrosine-protein phosphatase C into the construct. In addition, to enable the removal of N-terminal domains that are not necessary after protein expression, we further incorporated the cleavage site of Brachypodium distachyon small ubiquitin-like modifier. The GtCel12A-CBM3 fusion protein produced in the leaves of Nicotiana benthamiana exhibited not only high solubility but also efficient endoglucanase activity on the carboxymethyl cellulose substrate as determined by 3,5-dinitrosalicylic acid assay. The endoglucanase activity of GtCel12A-CBM3 was maintained even when immobilized on microcrystalline cellulose beads. Taken together, these results indicate that GtCel12A endoglucanase produced in plants might be used to provide monomeric sugars from lignocellulosic biomass for bioethanol production.

9.
Biotechnol Biofuels ; 14(1): 37, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549141

RESUMEN

BACKGROUND: Woody plants with high glucose content are alternative bioresources for the production of biofuels and biochemicals. Various pretreatment methods may be used to reduce the effects of retardation factors such as lignin interference and cellulose structural recalcitrance on the degradation of the lignocellulose material of woody plants. RESULTS: A hydrogen peroxide-acetic acid (HPAC) pretreatment was used to reduce the lignin content of several types of woody plants, and the effect of the cellulose structural recalcitrance on the enzymatic hydrolysis was analyzed. The cellulose structural recalcitrance and the degradation patterns of the wood fibers in the xylem tissues of Quercus acutissima (hardwood) resulted in greater retardation in the enzymatic saccharification than those in the tracheids of Pinus densiflora (softwood). In addition to the HPAC pretreatment, the application of supplementary enzymes (7.5 FPU cellulase for 24 h) further increased the hydrolysis rate of P. densiflora from 61.42 to 91.94% whereas the same effect was not observed for Q. acutissima. It was also observed that endoxylanase synergism significantly affected the hydrolysis of P. densiflora. However, this synergistic effect was lower for other supplementary enzymes. The maximum concentration of the reducing sugars produced from 10% softwood was 89.17 g L-1 after 36 h of hydrolysis with 15 FPU cellulase and other supplementary enzymes. Approximately 80 mg mL-1 of reducing sugars was produced with the addition of 7.5 FPU cellulase and other supplementary enzymes after 36 h, achieving rapid saccharification. CONCLUSION: HPAC pretreatment removed the interference of lignin, reduced structural recalcitrance of cellulose in the P. densiflora, and enabled rapid saccharification of the woody plants including a high concentration of insoluble substrates with only low amounts of cellulase. HPAC pretreatment may be a viable alternative for the cost-efficient production of biofuels or biochemicals from softwood plant tissues.

10.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962056

RESUMEN

In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.


Asunto(s)
Citrus/metabolismo , Hesperidina/metabolismo , Azúcares/metabolismo , Biomasa , Celulasas/metabolismo , Citrus/química , Frutas/química , Frutas/metabolismo , Hesperidina/química , Hesperidina/aislamiento & purificación , Hidrólisis , Extracción Líquido-Líquido , Espectroscopía de Resonancia Magnética
11.
Biomolecules ; 10(5)2020 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456184

RESUMEN

Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacumL.) overexpressing thermostable ß-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce ß-glucosidase for lignocellulose conversion.


Asunto(s)
Proteínas Bacterianas/genética , Biomasa , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , beta-Glucosidasa/genética , Proteínas Bacterianas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Azúcares/metabolismo , Thermotoga maritima/genética , Termotolerancia , Nicotiana/crecimiento & desarrollo , Regulación hacia Arriba , beta-Glucosidasa/metabolismo
12.
Protoplasma ; 257(3): 807-817, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31909437

RESUMEN

Alkyl hydroperoxide reductase subunit F (AhpF) is a well-known flavoprotein that transfers electrons from pyridine nucleotides to the peroxidase protein AhpC via redox-active disulfide centers to detoxify hydrogen peroxide. However, study of AhpF has historically been limited to particular eubacteria, and the connection between the functional and structural properties of AhpF remains unknown. The present study demonstrates the dual function of Pseudomonas aeruginosa AhpF (PaAhpF) as a reductase and a molecular chaperone. It was observed that the functions of PaAhpF are closely linked with its structural status. The reductase and foldase chaperone function of PaAhpF predominated for its low-molecular-weight (LMW) form, whereas the holdase chaperone function of PaAhpF was found associated with its high-molecular-weight (HMW) complex. Further, the present study also demonstrates the multiple function of PaAhpF in controlling oxidative and heat stresses in P. aeruginosa resistance to oxidative and heat stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/química , Peroxirredoxinas/química , Pseudomonas aeruginosa/metabolismo , Secuencia de Aminoácidos , Oxidación-Reducción
13.
Bioresour Technol ; 298: 122386, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31740245

RESUMEN

Dwindling petroleum resources and increasing environmental concerns have stimulated the production of platform chemicals via biochemical processes through the use of renewable carbon sources. Various types of biomass wastes, which are biodegradable and vastly underutilized, are generated worldwide in huge quantities. They contain diverse chemical constituents, which may serve as starting points for the manufacture of a wide range of valuable bio-derived platform chemicals, intermediates, or end products via different conversion pathways. The valorization of inexpensive, abundantly available, and renewable biomass waste could provide significant benefits in response to increasing fossil fuel demands and manufacturing costs, as well as emerging environmental concerns. This review explores the potential for the use of available biomass waste to produce important chemicals, such as monosaccharides, oligosaccharides, biofuels, bioactive molecules, nanocellulose, and lignin, with a focus on commercially viable technologies.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Carbono
14.
Food Chem ; 299: 125120, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31288162

RESUMEN

Although coffee beans have been widely studied, application of coffee flower (CF) has not been previously investigated. Here, we evaluated the use of CF for the production of bioactive compounds, melanoidins, and bio-sugars through the green process. Pressurized hot water extraction was found to be the most appropriate method for extracting bioactive compounds from CF, which contain high values of total phenolic content and have antioxidant properties. Caffeine and trigonelline were the main compounds in CF with yields of 1070.8 mg and 1092.8 mg/100 g dry weight (DW), respectively. Melanoidins were also identified and quantified in the CF extracts that is approximately 30.2% were efficiently recovered in the initial extracts of CF. Bio-sugar was also obtained from cellulase and pectinase at a 92.8% conversion rate. The aim of this study is to promote a novel approach using high amounts of CFs in the production of functional healthy foods and beverages.


Asunto(s)
Coffea/química , Flores/química , Fitoquímicos/metabolismo , Polímeros/metabolismo , Azúcares/metabolismo , Alcaloides/análisis , Antioxidantes/análisis , Cafeína/análisis , Carbohidratos/análisis , Fenoles/análisis
15.
Bioresour Technol ; 272: 209-216, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30340187

RESUMEN

Spent coffee grounds (SCG) or coffee residue wastes (CRW) provide excellent raw material for mannose and bioethanol production. In this study, SCG were used to produce valuable biosugars, including oligosaccharides (OSs), manno-oligosaccharides (MOSs), mannose, and bioethanol. SCG were subjected to delignification and defatting, producing SCG-derived polysaccharides. Two-stage enzymatic hydrolysis (short- and long-term) was performed to produce short-chain manno-oligosaccharides (MOSs) and monosaccharides (MSs), respectively. From 100 g dry weight (DW) amounts of SCG, approximately 77 g delignified SCG and 61 g SCG-derived polysaccharides, amounts of 15.9 g of first biosugars (mostly MOSs), 25.6 g of second biosugars (mostly MSs), and 3.1 g of bioethanol, were recovered. This technique may aid in the production of high-value mannose and OSs from SCG and other lignocellulosic biomasses that contain specific polysaccharides.


Asunto(s)
Café/metabolismo , Manosa/biosíntesis , Oligosacáridos/biosíntesis , Café/química , Hidrólisis , Polisacáridos/metabolismo
16.
Sci Rep ; 8(1): 9171, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907832

RESUMEN

Ascorbate peroxidase (APX) is a class I haem-containing peroxidase, which catalyses the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. APX plays a central role in the elimination of intracellular reactive oxygen species (ROS) and protects plants from the oxidative damage that can occur as a result of biotic and abiotic stresses. At present, the only known function of APX is as a peroxidase. However, in this study, we demonstrate that Oryza sativa APX2 also operates as a molecular chaperone in rice. The different functions of OsAPX2 correlate strongly with its structural conformation. The high-molecular-weight (HMW) complexes had chaperone activity, whereas the low-molecular-weight (LMW) forms displayed predominantly APX activity. The APX activity was effectively inhibited by sodium azide, which is an inhibitor of haem-containing enzymes, but this did not affect the protein's activity as a chaperone. Additionally, the OsAPX2 conformational changes could be regulated by salt and heat stresses and these stimulated OsAPX2 dissociation and association, respectively. Our results provide new insight into the roles of APXs.


Asunto(s)
Ascorbato Peroxidasas/química , Chaperonas Moleculares/química , Oryza/enzimología , Proteínas de Plantas/química , Ascorbato Peroxidasas/metabolismo , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Estrés Salino/fisiología
17.
J Biotechnol ; 260: 84-90, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28923717

RESUMEN

The rapid increase of agricultural waste is becoming a burgeoning problem and considerable efforts are being made by numerous researchers to convert it into a high-value resource material. Onion waste is one of the biggest issues in a world of dwindling resource. In this study, the potential of onion juice residue (OJR) for producing valuable rare sugar or bioethanol was evaluated. Purified Paenibacillus polymyxaL-arabinose isomerase (PPAI) has a molecular weight of approximately 53kDa, and exhibits maximal activity at 30°C and pH 7.5 in the presence of 0.8mM Mn2+. PPAI can produce 0.99g D-tagatose from 10g OJR. In order to present another application for OJR, we produced 1.56g bioethanol from 10g OJR through a bioconversion and fermentation process. These results indicate that PPAI can be used for producing rare sugars in an industrial setting, and OJR can be converted to D-tagatose and bioethanol.


Asunto(s)
Biocombustibles/análisis , Etanol/metabolismo , Hexosas/metabolismo , Ingeniería Metabólica/métodos , Cebollas/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Biotecnología , Escherichia coli/genética , Etanol/análisis , Hexosas/análisis , Concentración de Iones de Hidrógeno , Cebollas/citología , Paenibacillus polymyxa/enzimología , Paenibacillus polymyxa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
18.
Bioresour Technol ; 244(Pt 1): 1039-1048, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28851158

RESUMEN

A novel, integrated process for economical high-yield production of d-mannose and ethanol from coffee residue waste (CRW), which is abundant and widely available, was reported. The process involves pretreatment, enzymatic hydrolysis, fermentation, color removal, and pervaporation, which can be performed using environmentally friendly technologies. The CRW was pretreated with ethanol at high temperature and then hydrolyzed with enzymes produced in-house to yield sugars. Key points of the process are: manipulations of the fermentation step that allowing bioethanol-producing yeasts to use almost glucose and galactose to produce ethanol, while retaining large amounts of d-mannose in the fermented broth; removal of colored compounds and other components from the fermented broth; and separation of ethanol and d-mannose through pervaporation. Under optimized conditions, approximately 15.7g dry weight (DW) of d-mannose (approximately 46% of the mannose) and approximately 11.3g DW of ethanol from 150g DW of ethanol-pretreated CRW, were recovered.


Asunto(s)
Biocombustibles , Café , Manosa , Saccharomyces cerevisiae , Etanol , Fermentación , Hidrólisis
19.
Bioresour Technol ; 244(Pt 1): 1068-1072, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28851162

RESUMEN

In this study, the production of bioethanol and value added d-psicose from Jerusalem artichoke (JA) was attempted by an enzymatic method. An enzyme mixture used for hydrolysis of 100mgmL-1 JA. The resulting concentrations of released d-fructose and d-glucose were measured at approximately 56mgmL-1 and 15mgmL-1, respectively. The d-psicose was epimerized from the JA hydrolyzate, and the conversion rate was calculated to be 32.1%. The residual fructose was further converted into ethanol at 18.0gL-1 and the yield was approximately 72%. Bioethanol and d-psicose were separated by pervaporation. This is the first study to report simultaneous d-psicose production and bioethanol fermentation from JA.


Asunto(s)
Fructosa , Helianthus , Fermentación , Tubérculos de la Planta
20.
Front Plant Sci ; 8: 683, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507557

RESUMEN

Despite the increasing understanding of the crucial roles of glutathione (GSH) in cellular defense against heavy metal stress as well as oxidative stress, little is known about the functional role of exogenous GSH in mercury (Hg) tolerance in plants. Here, we provide compelling evidence that GSH contributes to Hg tolerance in diverse plants. Exogenous GSH did not mitigate the toxicity of cadmium (Cd), copper (Cu), or zinc (Zn), whereas application of exogenous GSH significantly promoted Hg tolerance during seed germination and seedling growth of Arabidopsis thaliana, tobacco, and pepper. By contrast, addition of buthionine sulfoximine, an inhibitor of GSH biosynthesis, severely retarded seed germination and seedling growth of the plants in the presence of Hg. The effect of exogenous GSH on Hg specific tolerance was also evident in the presence of other heavy metals, such as Cd, Cu, and Zn, together with Hg. GSH treatment significantly decreased H2O2 and O2- levels and lipid peroxidation, but increased chlorophyll content in the presence of Hg. Importantly, GSH treatment resulted in significantly less accumulation of Hg in Arabidopsis plants, and thin layer chromatography and nuclear magnetic resonance analysis revealed that GSH had much stronger binding affinity to Hg than to Cd, Cu, or Zn, suggesting that tight binding of GSH to Hg impedes Hg uptake, leading to low Hg accumulation in plant cells. Collectively, the present findings reveal that GSH is a potent molecule capable of conferring Hg tolerance by inhibiting Hg accumulation in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...