Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(58): 7414-7426, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38894652

RESUMEN

Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.

2.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809465

RESUMEN

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Asunto(s)
Alopecia Areata , Proliferación Celular , Folículo Piloso , Interferón gamma , Vía de Señalización Wnt , beta Catenina , Humanos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/citología , Folículo Piloso/metabolismo , Proliferación Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Interferón gamma/metabolismo , beta Catenina/metabolismo , Alopecia Areata/metabolismo , Alopecia Areata/tratamiento farmacológico , Alopecia Areata/patología , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Quinasas Janus/metabolismo , Dermis/citología , Dermis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Cabello/efectos de los fármacos , Cabello/crecimiento & desarrollo , Proteína Wnt-5a/metabolismo , Janus Quinasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción STAT/metabolismo
3.
ACS Macro Lett ; 13(6): 726-733, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38809767

RESUMEN

Plants, essential for food, oxygen, and economic stability, are under threat from human activities, biotic threats, and climate change, requiring rapid technological advancements for protection. Biohybrid systems, merging synthetic macromolecules with biological components, have provided improvement to biological systems in the past, namely, in the biomedical arena, motivating an opportunity to enhance plant well-being. Nevertheless, strategies for plant biohybrid systems remain limited. In this study, we present a method using grafting-from ring-opening metathesis polymerization (ROMP) under physiological conditions to integrate norbornene-derived polymers into live plants by spray coating. The approach involves creating biological macroinitiators on leaf surfaces, which enable subsequent polymerization of norbornene-derived monomers. Characterization techniques, including FTIR spectroscopy, SEM EDS imaging, ICP-MS, nanoindentation, and XPS, confirmed the presence and characterized the properties of the polymeric layers on leaves. The demonstrated modifiability and biocompatibility could offer the potential to maintain plant health in various applications, including the development of thermal barriers, biosensors, and crop protection layers.


Asunto(s)
Norbornanos , Hojas de la Planta , Norbornanos/química , Hojas de la Planta/química , Polimerizacion , Polímeros/química , Plásticos
4.
Nat Commun ; 15(1): 3925, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724512

RESUMEN

Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.

5.
Small ; 20(28): e2311164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295083

RESUMEN

Smart hydrogels are a promising candidate for the development of next-generation soft materials due to their stimuli-responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness-dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation.

6.
Small ; 20(15): e2311510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267811

RESUMEN

Zinc-bromine (Zn-Br) redox provides a high energy density and low-cost option for next-generation energy storage systems, and polybromide diffusion remains a major issue leading to Zn anode corrosion, dendrite growth, battery self-discharge and limited electrochemical performance. A dual-functional Alginate-Graphene Oxide (AGO) hydrogel coating is proposed to prevent polybromide corrosion and suppress dendrite growth in Zn-Br batteries through negatively charged carboxyl groups and enhanced mechanical properties. The battery with anode of plain zinc coated with AGO (Zn]AGO) survives a severely corrosive environment with higher polybromide concentration than usual without a membrane, and achieves 80 cycles with 100% Coulombic and 80.65% energy efficiencies, four times compared to plain Zn anode. The promising performance is comparable to typical Zn-Br batteries using physical membranes, and the AGO coating concept can be well adapted to various Zn-Br systems to promote their applications.

7.
Int J Biol Macromol ; 254(Pt 3): 127984, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951429

RESUMEN

Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.


Asunto(s)
Nanocompuestos , Nanopartículas , Temperatura , Silanos , Celulosa/química , Polímeros/química , Nanocompuestos/química , Nanopartículas/química
8.
ACS Mater Lett ; 5(11): 3117-3125, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37969140

RESUMEN

Analyzing hydrogel microstructure through scanning electron microscopy (SEM) images is crucial in understanding hydrogel properties. However, the analysis of SEM images in hydrogel research heavily relies on the intuition of individual researchers and is constrained by the limited size of the dataset. To address this, we propose SEMPro, a data-driven solution using web-scraping and deep learning (DL) to compile and analyze the structure-property relationships of hydrogels through SEM images. It accurately predicts the elastic modulus from SEM images within the same order of magnitude and displays a learned extraction of modulus-relevant features in SEM images as seen through the nontrivial activation mapping and transfer learning. By employing Explainable AI through activation map exposure, SEMPro validates the model predictions. SEMPro represents a closed-loop data collection and analysis pipeline, providing critical insights into hydrogels and soft materials. This innovative approach has the potential to revolutionize hydrogel research, offering high-dimensional insights for further advancements.

9.
Food Sci Biotechnol ; 32(11): 1585-1594, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37637841

RESUMEN

Wheat is cultivated worldwide and is the most widely distributed food crop. Wheat is a staple crop in many countries. However, the effects of various cultivation methods on the efficacy of wheat sprouts have not been determined. This study investigated wheat sprouts obtained using a standardized smart farm system (WS-S) to improve the effects of non-alcoholic fatty liver disease (NAFLD) and molecular mechanism. Wheat sprouts significantly attenuated the accumulation of lipid droplets in FFA-induced HepG2 cells through AMPK pathway activity. In vivo experiments showed that WS-S significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate transaminase, and alanine aminotransferase levels in HFD/F-treated mice. Furthermore, WS-S stimulated the phosphorylation of ACC and peroxisome proliferator-activated receptor alpha via the AMPK pathway and inhibited SREBP-1/FAS signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. These results suggest that WS-S ameliorates NAFLD by regulating fatty acid metabolism via the AMPK pathway.

11.
ACS Appl Mater Interfaces ; 15(31): 37390-37400, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498204

RESUMEN

Various redox couples have been reported to increase the energy density and reduce the price of redox flow batteries (RFBs). Among them, the vanadium electrolyte is mainly used due to its high solubility, but electrode modification is still necessary due to its low reversibility and sluggish kinetics. Also, an incompatible ion exchange membrane with redox-active species leads to self-discharge referred to as crossover. Here, we report a V/Mn RFB using an anion exchange membrane (AEM) for crossover mitigation and etched carbon felt by nickel-bismuth (NB-ECF) for the vanadium anolyte. The NB-ECF significantly enhances the reversibility and kinetics of the V2+/V3+ redox reaction, attributed to inhibited irreversible hydrogen evolution by the Bi catalyst and increased carboxyl groups by nickel (etching and NiO catalyst). Notably, the V/Mn cell employed in the NB-ECF maintains a high energy efficiency of 85.7% during 50 cycles without capacity degradation at a current density of 20 mA cm-2, which is attributed to a synergistic effect of crossover mitigation and facilitated V2+/V3+ redox reaction. This study demonstrates the novel electrocatalyst design of carbon felt using two metal species.

12.
Soft Matter ; 19(24): 4432-4438, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37310712

RESUMEN

A method coupling microgel jamming and temperature-responsive capillary networking is developed to manipulate the rheological properties of microgel-capillary suspensions by varying microgel sizes, volume fraction of capillary solution, and temperature after polymerization and photo-crosslinking. This approach allows for the 3D extrusion of this suspension to print complex structures that can be readily scaled up and applied to biomedical fields and soft material-based actuation.

13.
Proc Natl Acad Sci U S A ; 120(14): e2207662120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37000847

RESUMEN

Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system's total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system's total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems.


Asunto(s)
Citoesqueleto , Microtúbulos , Termodinámica , Entropía , Modelos Químicos
14.
Adv Mater ; 35(3): e2206385, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305604

RESUMEN

3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.


Asunto(s)
Melaninas , Piel , Humanos , Fantasmas de Imagen , Óptica y Fotónica , Imagen Óptica
15.
Soft Matter ; 18(46): 8771-8778, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36349899

RESUMEN

The stimuli-responsive self-folding structure is ubiquitous in nature, for instance, the mimosa folds its leaves in response to external touch or heat, and the Venus flytrap snaps shut to trap the insect inside. Thus, modeling self-folding structures has been of great interest to predict the final configuration and understand the folding mechanism. Here, we apply a simple yet effective method to predict the folding angle of the temperature-responsive nanocomposite hydrogel/elastomer bilayer structure manufactured by 3D printing, which facilitates the study of the effect of the inevitable variations in manufacturing and material properties on folding angles by comparing the simulation results with the experimentally measured folding angles. The defining feature of our method is to use thermal expansion to model the temperature-responsive nanocomposite hydrogel rather than the nonlinear field theory of diffusion model that was previously applied. The resulted difference between the simulation and experimentally measured folding angle (i.e., error) is around 5%. We anticipate that our method could provide insight into the design, control, and prediction of 3D printing of stimuli-responsive shape morphing (i.e., 4D printing) that have potential applications in soft actuators, robots, and biomedical devices.


Asunto(s)
Elastómeros , Hidrogeles , Hidrogeles/química , Elastómeros/química , Nanogeles , Impresión Tridimensional , Temperatura
16.
Nanoscale ; 14(48): 17887-17894, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36448666

RESUMEN

Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly(N-isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling-deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling-deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.

17.
Small ; 18(47): e2204288, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216774

RESUMEN

Stimuli-responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small-scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature-responsive poly(N-isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser-cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto-photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems.


Asunto(s)
Hidrogeles , Polímeros , Temperatura , Rayos Láser
18.
Carbohydr Polym ; 296: 119973, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088012

RESUMEN

The development of low-temperature self-healing polymers is crucial because high-temperature or softening conditions for rapid self-healing inevitably reduce their mechanical strength. Herein, we first report cellulose nanocrystal (CNC)/polymer nanocomposites with a rapid low-temperature self-healing performance. The nanocomposite was prepared by simple blending of grafted CNC and matrix prepolymer made from the monomers having metal-ligand coordination and lower critical solution temperature functionalities along with the presence of hexamethylene diisocyanate and dibutyltin dilaurate. Owing to the dynamic nature of both hydrogen bonds and metal-ligand coordinated covalent bonds, the resultant nanocomposites showed excellent self-healing efficiency (99 %, within 1 h) at a low temperature (5 °C) with robust mechanical properties including a high stretchability (230 %), high toughness (2538 MJ/m3), enhanced tensile strength (25.49 ± 0.02 MPa), and improved thermomechanical properties. Self-healing performance of the coordinated covalent bonds requiring active hydrogen was considerably improved by the introduction of CNCs with abundant hydrogen bonds.


Asunto(s)
Nanocompuestos , Nanopartículas , Celulosa/química , Ligandos , Nanocompuestos/química , Nanopartículas/química , Polímeros , Temperatura
19.
ACS Macro Lett ; 11(8): 961-966, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35819363

RESUMEN

Engineered living materials (ELMs) that incorporate living organisms and synthetic materials enable advanced functional properties. Here, we seek to create plant cyborgs by combining plants or plant tissues with stimuli-responsive polymeric materials. Plant tissues with integrated shape control may find applications in regenerative medicine, and the shape control of living plants enables another dimension of adaptability and response to environmental threats, which can be applied to next-generation precision farming. In this work, we develop chemistry to integrate stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels with decellularized plant tissues assisted by 3D printing. We demonstrate programmable shape morphing in response to thermal cues and ultraviolet (UV) light. Specifically, by taking advantage of the extrusion-based 3D printing method, we deposit nanocomposite PNIPAM precursors onto silane-treated decellularized leaf surface with prescribed shapes and spatial control. When subjected to external stimuli, the strain mismatch generated between the swellable nanocomposite PNIPAM and nonswellable decellularized leaf enables folding and bending to occur. This strategy to integrate the plant tissues with stimuli-responsive hydrogels allows the control of leaf morphology, opening avenues for plant-based biosensors and soft actuators to enhance food security; such materials also may find applications in biomedicine as tissue-engineering scaffolds.


Asunto(s)
Hidrogeles , Nanocompuestos , Hidrogeles/química , Nanocompuestos/química , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
20.
Mater Horiz ; 9(7): 1825-1849, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35504034

RESUMEN

Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.


Asunto(s)
Elastómeros , Cristales Líquidos , Elasticidad , Elastómeros/química , Cristales Líquidos/química , Polímeros , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...