Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(10): 1907-1912, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806885

RESUMEN

Screen printing (SP) has been extensively studied owing to its widespread industrial applications; however, only a few studies have focused on the substrate effect. Herein, we demonstrate that a screen-printed line can undergo a broadening effect or lateral undulation, which is determined by the substrate and printed dimensions. The degree of spreading was systematically investigated by employing 1D and 2D geometrical parameters. Based on the liquidity of the ink, we developed a simple inviscid theory with imposed perturbation to analyze the instability of screen-printed lines. The dispersion relation was derived to estimate the geometry of the laterally undulated lines and compared with the experimental results. The proposed argument is particularly applicable to a regime in which SP inks have greater liquidity. The screen-printed patterns exhibited unique undulated shapes and were utilized as photomasks for the facile fabrication of raccoon-type microchannels.

2.
Adv Mater ; 30(45): e1802997, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30156738

RESUMEN

Advanced materials with low density and high strength impose transformative impacts in the construction, aerospace, and automobile industries. These materials can be realized by assembling well-designed modular building units (BUs) into interconnected structures. This study uses a hierarchical design strategy to demonstrate a new class of carbon-based, ultralight, strong, and even superelastic closed-cellular network structures. Here, the BUs are prepared by a multiscale design approach starting from the controlled synthesis of functionalized graphene oxide nanosheets at the molecular- and nanoscale, leading to the microfluidic fabrication of spherical solid-shelled bubbles at the microscale. Then, bubbles are strategically assembled into centimeter-scale 3D structures. Subsequently, these structures are transformed into self-interconnected and structurally reinforced closed-cellular network structures with plesiohedral cellular units through post-treatment, resulting in the generation of 3D graphene lattices with rhombic dodecahedral honeycomb structure at the centimeter-scale. The 3D graphene suprastructure concurrently exhibits the Young's modulus above 300 kPa while retaining a light density of 7.7 mg cm-3 and sustaining the elasticity against up to 87% of the compressive strain benefiting from efficient stress dissipation through the complete space-filling closed-cellular network. The method of fabricating the 3D graphene closed-cellular structure opens a new pathway for designing lightweight, strong, and superelastic materials.

3.
Soft Matter ; 13(45): 8357-8361, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29111556

RESUMEN

We fabricate an elastomeric beam standing on a flexible substrate using 3D printing and soft lithography and investigate lateral buckling generated in the part of the wall when this beam is under pure bending. We also observe changes in the morphology of wrinkling along the applied strain and geometry of the wall, and then analyze it with scaling concepts. Furthermore, the degree of lateral buckling is controlled through the tip design in the ratchet structure and it is verified with finite element simulation. Based on this, a millimeter scale device with a visual difference according to the curvature is manufactured.

4.
Soft Matter ; 12(31): 6507-11, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27445116

RESUMEN

Folds, highly deformed structures, have received extensive attention for their nonlinear responses due to a large strain on soft matters. To investigate the folding phenomena, here, we exploit residual tensile stress during metal deposition, which is large enough to compress a thin film coating and introduce a photocurable viscous fluid to decrease the resistance of the substrate against compressive stress. The system has the advantages of the abilities for freezing the highly deformed surfaces by post-UV exposure to the UV-crosslinkable substrate and manipulating the substrate effect by controlling the thickness of the substrate. We theoretically investigated the dependence on the substrate thickness using scaling analysis and demonstrated self-generated ladder and flower-like graphoepitaxial structures originated from the thickness design of the viscous substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...