Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475483

RESUMEN

Inorganic phosphate (Pi) homeostasis plays an important role in plant growth and abiotic stress tolerance. Several MYB-CC transcription factors involved in Pi homeostasis have been identified in rice (Oryza sativa). PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) is a class II MYC-CC protein, in which the MYC-CC domain is located at the N terminus. In this study, we established that OsPHL7 is localized to the nucleus and that the encoding gene is induced by Pi deficiency. The Pi-responsive genes and Pi transporter genes are positively regulated by OsPHL7. The overexpression of OsPHL7 enhanced the tolerance of rice plants to Pi starvation, whereas the RNA interference-based knockdown of this gene resulted in increased sensitivity to Pi deficiency. Transgenic rice plants overexpressing OsPHL7 produced more roots than wild-type plants under both Pi-sufficient and Pi-deficient conditions and accumulated more Pi in the shoots and roots. In addition, the overexpression of OsPHL7 enhanced rice tolerance to salt stress. Together, these results demonstrate that OsPHL7 is involved in the maintenance of Pi homeostasis and enhances tolerance to Pi deficiency and salt stress in rice.

2.
Plant Signal Behav ; 16(2): 1849490, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300429

RESUMEN

Height and leaf morphology are important agronomic traits of the major crop plant rice (Oryza sativa). In previous studies, the dwarf and narrow leaf genes (dnl1, dnl2 and dnl3) have identified in rice. Using the Ac/Ds knockout system, we found a new dwarf and narrow leaf (dnl) mutant and identified mutated gene. The dnl-4 mutant showed reduced plant height and leaf blade width compared to the wild type, and increased leaf inclination. The morphological defects of the mutant were caused by the suppressed expression of the DNL-4 gene, which encodes a pfkB carbohydrate kinase protein. These results suggest that DNL-4 expression is involved in modulating plant height and leaf growth. Furthermore, DNL-4 expression also affects productivity in rice: the dnl-4 mutant exhibited reduced panicle length and grain width compared with the wild type. To understand DNL-4 function in rice, we analyzed the expression levels of leaf growth-related genes, such as NAL1, NAL7, and CSLD4, in the dnl-4 mutant. Expression of NAL1 and NAL7 was downregulated in the dnl-4 mutant compared to the wild type. The observation that DNL-4 expression corresponded with that of NAL1 and NAL7 is consistent with the narrow leaf phenotype of the dnl-4 mutant. These results suggest that DNL-4 regulates plant height and leaf structure in rice.


Asunto(s)
Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética
3.
PLoS One ; 13(3): e0194628, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566032

RESUMEN

Myeloblastosis (MYB) transcription factors play central roles in plant developmental processes and in responses to nutrient deficiency. In this study, OsMYB5P, an R2R3-MYB transcription factor, was isolated and identified from rice (Oryza sativa L. 'Dongjin') under inorganic phosphate (Pi)-deficient conditions. OsMYB5P protein is localized to the nucleus and functions as a transcription activator in plant development. Overexpression of OsMYB5P in rice and Arabidopsis (Arabidopsis thaliana Col-0) increases tolerance to phosphate starvation, whereas OsMYB5P knock-out through RNA interference increases sensitivity to Pi depletion in rice. Furthermore, shoots and roots of transgenic rice plants overexpressing OsMYB5P were longer than those of wild plants under both normal and Pi-deficient conditions. These results indicate that OsMYB5P is associated with the regulation of shoot development and root- system architecture. Overexpression of OsMYB5P led to increased Pi accumulation in shoots and roots. Interestingly, OsMYB5P directly bound to MBS (MYB binding site) motifs on the OsPT5 promoter and induced transcription of OsPT5 in rice. In addition, overexpression of OsMYB5P in Arabidopsis triggered increased expression of AtPht1;3, an Arabidopsis Pi transporter, in shoots and roots under normal and Pi-deficient conditions. Together, these results demonstrate that overexpression of OsMYB5P increases tolerance to Pi deficiency in plants by modulating Pi transporters at the transcriptional level in monocots and dicots.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA