Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176904

RESUMEN

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Asunto(s)
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ácido Glutámico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología
2.
Materials (Basel) ; 16(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895734

RESUMEN

In this paper, we investigate the structural, microstructural, dielectric, and energy storage properties of Nd and Mn co-doped Ba0.7Sr0.3TiO3 [(Ba0.7Sr0.3)1-xNdxTi1-yMnyO3 (BSNTM) ceramics (x = 0, 0.005, and y = 0, 0.0025, 0.005, and 0.01)] via a defect dipole engineering method. The complex defect dipoles (MnTi"-VO∙∙)∙ and (MnTi"-VO∙∙) between acceptor ions and oxygen vacancies capture electrons, enhancing the breakdown electric field and energy storage performances. XRD, Raman, spectroscopy, XPS, and microscopic investigations of BSNTM ceramics revealed the formation of a tetragonal phase, oxygen vacancies, and a reduction in grain size with Mn dopant. The BSNTM ceramics with x = 0.005 and y = 0 exhibit a relative dielectric constant of 2058 and a loss tangent of 0.026 at 1 kHz. These values gradually decreased to 1876 and 0.019 for x = 0.005 and y = 0.01 due to the Mn2+ ions at the Ti4+- site, which facilitates the formation of oxygen vacancies, and prevents a decrease in Ti4+. In addition, the defect dipoles act as a driving force for depolarization to tailor the domain formation energy and domain wall energy, which provides a high difference between the maximum polarization of Pmax and remnant polarization of Pr (ΔP = 10.39 µC/cm2). Moreover, the complex defect dipoles with optimum oxygen vacancies in BSNTM ceramics can provide not only a high ΔP but also reduce grain size, which together improve the breakdown strength from 60.4 to 110.6 kV/cm, giving rise to a high energy storage density of 0.41 J/cm3 and high efficiency of 84.6% for x = 0.005 and y = 0.01. These findings demonstrate that defect dipole engineering is an effective method to enhance the energy storage performance of dielectrics for capacitor applications.

3.
Life Sci ; 328: 121903, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394095

RESUMEN

AIMS: Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to receptor signaling remain unclear. MAIN METHODS: Using isometric tension measurements, patch-clamping, and western blotting, we examined the contribution of caveolae and their related signaling pathways to serotonergic (5-HT2A receptor-mediated) and adrenergic (α1-adrenoceptor-mediated) signaling in rat mesenteric arteries. KEY FINDINGS: Disruption of caveolae by methyl-ß-cyclodextrin effectively blocked vasoconstriction mediated by the 5-HT2A receptor (5-HT2AR), but not by the α1-adrenoceptor. Caveolar disruption selectively impaired 5-HT2AR-mediated voltage-dependent K+ channel (Kv) inhibition, but not α1-adrenoceptor-mediated Kv inhibition. In contrast, both serotonergic and α1-adrenergic effects on vasoconstriction, as well as Kv currents, were similarly blocked by the Src tyrosine kinase inhibitor PP2. However, inhibition of protein kinase C (PKC) by either GO6976 or chelerythrine selectively attenuated the effects mediated by the α1-adrenoceptor, but not by 5-HT2AR. Disruption of caveolae decreased 5-HT2AR-mediated Src phosphorylation, but not α1-adrenoceptor-mediated Src phosphorylation. Finally, the PKC inhibitor GO6976 blocked Src phosphorylation by the α1-adrenoceptor, but not by 5-HT2AR. SIGNIFICANCE: 5-HT2AR-mediated Kv inhibition and vasoconstriction are dependent on caveolar integrity and Src tyrosine kinase, but not on PKC. In contrast, α1-adrenoceptor-mediated Kv inhibition and vasoconstriction are not dependent on caveolar integrity, but rather on PKC and Src tyrosine kinase. Caveolae-independent PKC is upstream of Src activation for α1-adrenoceptor-mediated Kv inhibition and vasoconstriction.


Asunto(s)
Proteína Quinasa C , Familia-src Quinasas , Ratas , Animales , Familia-src Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Caveolas/metabolismo , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Serotonina/farmacología , Serotonina/metabolismo , Vasoconstricción , Receptor de Serotonina 5-HT2A/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Adrenérgicos/metabolismo
4.
Korean J Physiol Pharmacol ; 27(4): 311-323, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37386829

RESUMEN

Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

5.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502209

RESUMEN

In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.


Asunto(s)
Compuestos de Calcio , Internet de las Cosas , Humanos , Óxidos , Prótesis e Implantes
6.
Korean J Physiol Pharmacol ; 26(5): 313-323, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36039732

RESUMEN

Atrial fibrillation (AF) is the most common supraventricular arrhythmia, and it corresponds highly with exercise intensity. Here, we induced AF in mice using acetylcholine (ACh)-CaCl2 for 7 days and aimed to determine the appropriate exercise intensity (no, low, moderate, high) to protect against AF by running the mice at different intensities for 4 weeks before the AF induction by ACh-CaCl2. We examined the AF-induced atrial remodeling using electrocardiogram, patch-clamp, and immunohistochemistry. After the AF induction, heart rate, % increase of heart rate, and heart weight/body weight ratio were significantly higher in all the four AF groups than in the normal control; highest in the high-ex AF and lowest in the low-ex (lower than the no-ex AF), which indicates that low-ex treated the AF. Consistent with these changes, G protein-gated inwardly rectifying K+ currents, which were induced by ACh, increased in an exercise intensity-dependent manner and were lower in the low-ex AF than the no-ex AF. The peak level of Ca2+ current (at 0 mV) increased also in an exercise intensity-dependent manner and the inactivation time constants were shorter in all AF groups except for the low-ex AF group, in which the time constant was similar to that of the control. Finally, action potential duration was shorter in all the four AF groups than in the normal control; shortest in the high-ex AF and longest in the low-ex AF. Taken together, we conclude that low-intensity exercise protects the heart from AF, whereas high-intensity exercise might exacerbate AF.

7.
Biochem Biophys Rep ; 30: 101251, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35313645

RESUMEN

As the geriatric population and life expectancy increase, the interest in preventing geriatric diseases, such as sarcopenia, is increasing. However, the causes of sarcopenia are unclear, and current diagnostic methods for sarcopenia are unreliable. We hypothesized that the changes in the expression of certain miRNAs may be associated with the pathophysiology of sarcopenia. Herein, we analyzed the miRNA expression profiles in the blood of young (3-months-old) healthy rats, old sarcopenic (17-months-old) rats, and age-matched (17-months-old) control rats. The changes in miRNA expression levels were analyzed using Bowtie 2 software. A total of 523 miRNAs were detected in the rat serum. Using scatter plots and clustering heatmap data, we found 130 miRNAs that were differentially expressed in sarcopenic rats (>2-fold change) compared to the expression in young healthy and age-matched control rats. With a threshold of >5-fold change, we identified 14 upregulated miRNAs, including rno-miR-133b-3p, rno-miR-133a-3p, rno-miR-133c, rno-miR-208a-3p, and rno-miR434-5p among others in the serum of sarcopenic rats. A protein network map based on these 14 miRNAs identified the genes involved in skeletal muscle differentiation, among which Notch1, Egr2, and Myocd represented major nodes. The data obtained in this study are potentially useful for the early diagnosis of sarcopenia and for the identification of novel therapeutic targets for the treatment and/or prevention of sarcopenia.

8.
Life Sci ; 288: 120169, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822796

RESUMEN

AIMS: We investigated the changes in large-conductance Ca2+-activated K+ (BKCa) channels from human umbilical arterial smooth muscle cells experiencing gestational diabetes mellitus (GDM). MAIN METHODS: Whole-cell patch-clamp technique, arterial tone measurement, RT-PCR, Quantitative real-time PCR, western blot were performed in human umbilical arterial smooth muscle cells. KEY FINDINGS: Whole-cell BKCa current density was decreased in the GDM group compared with the normal group. The vasorelaxant effects of the synthetic BKCa channel activator NS-1619 (10 µM) were impaired in the GDM group compared with the normal group. Reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, and western blot analyses suggested that the mRNA, total RNA, and protein expression levels of the BKCa channel were decreased in the GDM group relative to the normal group. In addition, the expression levels of protein kinase A and protein kinase G, which regulate BKCa channel activity, remained unchanged between the groups. Applying the BKCa channel inhibitor paxilline (10 µM) induced vasoconstriction and membrane depolarization of isolated umbilical arteries in the normal group but showed less of an effect on umbilical arteries in the GDM group. SIGNIFICANCE: Our results demonstrate for the first time impaired BKCa current and BKCa channel-induced vasorelaxation activities that were not caused by impaired BKCa channel-regulated protein kinases, but by decreased expression of the BKCa channels, in the umbilical arteries of GDM patients.


Asunto(s)
Diabetes Gestacional/patología , Regulación de la Expresión Génica/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Miocitos del Músculo Liso/patología , Bloqueadores de los Canales de Potasio/farmacología , Arterias Umbilicales/patología , Adulto , Estudios de Casos y Controles , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Femenino , Humanos , Indoles/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Embarazo , Arterias Umbilicales/efectos de los fármacos , Arterias Umbilicales/metabolismo , Vasoconstricción
9.
Front Physiol ; 12: 758859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867464

RESUMEN

Innate immunity is the ultimate line of defense against invading pathogens in insects. Unlike in the mammalian model, in the insect model, invading pathogens are recognized by extracellular receptors, which activate the Toll signaling pathway through an extracellular serine protease cascade. In the Toll-NF-κB pathway, the extracellular spätzle protein acts as a downstream ligand for Toll receptors in insects. In this study, we identified a novel Spätzle isoform (TmSpz1b) from RNA sequencing database of Tenebrio molitor. TmSpz1b was bioinformatically analyzed, and functionally characterized for the antimicrobial function by RNA interference (RNAi). The 702 bp open reading frame of TmSpz1b encoded a putative protein of 233 amino acid residues. A conserved cystine-knot domain with seven cysteine residues in TmSpz1b was involved in three disulfide bridges and the formation of a spätzle dimer. TmSpz1b was mostly expressed in the hemocytes of T. molitor late instar larvae. The mRNA expression of TmSpz1b was highly induced in the hemocytes after Escherichia coli, Staphylococcus aureus, and Candida albicans stimulation of T. molitor larvae. TmSpz1b silenced larvae were significantly more susceptible to E. coli infection. In addition, RNAi-based functional assay characterized TmSpz1b to be involved in the positive regulation of antimicrobial peptide genes in hemocytes and fat bodies. Further, the TmDorX2 transcripts were downregulated in TmSpz1b silenced individuals upon E. coli challenge suggesting the relationship to Toll signaling pathway. These results indicate that TmSpz1b is involved in the T. molitor innate immunity, causes the sequestration of Gram-negative bacteria by the regulatory action of antimicrobial peptides, and enhances the survival of T. molitor larvae.

10.
Food Sci Biotechnol ; 30(12): 1593-1600, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34868707

RESUMEN

This study was conducted to investigate the effect of lactic acid fermentation and salt on the survival of Escherichia coli O157:H7 and Listeria monocytogenes in white kimchi containing various salt concentrations during storage at 4 and 15 °C. The survivals of pathogens during fermentation differed depending on salt concentrations and storage temperature. The survival of pathogens in kimchi containing 3% salt was higher than that in kimchi containing 1 and 2% salt, which may be related to the fact that lactic acid bacteria remained constant throughout the initial stage of fermentation. Thus, there was a lower reduction in the pH of kimchi containing 3% salt regardless of storage temperature. These protective effects may result from a gradual reduction in pH; however, the mechanisms are not clearly understood. Therefore, further investigations are needed to explain the mechanism by which lactic acid fermentation and salt in kimchi affect the growth of foodborne pathogens.

11.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639230

RESUMEN

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli/inmunología , Inmunidad Innata/inmunología , Proteínas de Insectos/metabolismo , Staphylococcus aureus/inmunología , Tenebrio/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Larva/genética , Larva/inmunología , Larva/metabolismo , Larva/microbiología , Filogenia , Homología de Secuencia de Aminoácido , Infecciones Estafilocócicas , Tenebrio/genética , Tenebrio/metabolismo , Tenebrio/microbiología
12.
Food Microbiol ; 100: 103854, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416957

RESUMEN

This study investigated the effects of combinations of acetic or malic acid and various solutes (salt, glucose, glycine, or sucrose) on the survival of Escherichia coli O157:H7 in laboratory broth. Additionally, the effectiveness of combining organic acids and various concentrations of salt (0-18%) or sucrose (0-100%) with different water activity values against E. coli O157:H7 were evaluated. For treatment of 1% malic acid, the addition of 3% salt showed synergistic effect. Whereas, when 3% salt, glucose, glycine, or sucrose was added to 1% acetic acid, the solutes antagonized the action of the acid against E. coli O157:H7. Acetic, lactic, or propionic acid combined with salt at either 7 or 9% or sucrose at 60, 80, or 100% resulted in the highest resistance of E. coli O157:H7. From a result of evaluating the membrane fatty acid (MFA) composition of cells, salt or sucrose significantly increased levels of saturated fatty acids (SFAs) or SFAs and cyclopropane fatty acids, respectively. From the results of this study, the addition of solutes and organic compounds may increase the tolerance of E. coli O157:H7 to acetic, lactic, and propionic acid treatments and that the salt or sucrose significantly affects cell MFA composition.


Asunto(s)
Ácido Acético/farmacología , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Glucosa/metabolismo , Malatos/farmacología , Propionatos/farmacología , Cloruro de Sodio/metabolismo , Sacarosa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Escherichia coli O157/metabolismo , Ácidos Grasos/metabolismo , Glicina/metabolismo
13.
Integr Med Res ; 10(4): 100729, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34150497

RESUMEN

BACKGROUND: Recently, some adverse effects of moxibustion has been reported such as burns, smoke, allergies, and so on. To overcome the adverse effects of traditional moxibustion, an ultrasonic moxibustion device (UMD) was designed, simulated, fabricated, and tested. The objective of this study is to provide detailed information about the main design parameters, simulation outcome, and performance-test results. METHODS: The main components of the UMD are a 1-MHz ultrasonic transducer (UT) with concave lens, and its applicator. The acoustic pressure and temperature distribution of the UT was simulated and described graphically using COMSOL software, which is based on the finite element method (FEM). Experimental verification of the temperature distribution was performed on the skin of pork. The temperature-change profiles of pork in relation to increase of therapy time were obtained at an unfocused point (2 mm) and at a focal distance of 13 mm. For the performance test, moxibustion therapy was conducted on the abdominal skin of mice for 120 min using the new UMD and its histological images were acquired to analyze the skin-tissue damage. RESULTS: The FEM simulation of temperature distribution and acoustic pressure agreed with the experimental outcome. Histological images showed that there was no skin-tissue damage to the mouse abdomens after therapy. The results clearly show that the newly developed UMD can overcome the disadvantages of traditional moxibustion therapy and achieve the proposed design parameters. CONCLUSION: The FEM simulation and performance tests provided valuable information about developing future UMDs. In addition, its performance can be compared with traditional moxibustion therapy for future study.

14.
Food Sci Biotechnol ; 30(3): 475-485, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33868758

RESUMEN

This study was undertaken to develop enhanced selective media for detection of Vibrio parahaemolyticus in oysters. Primarily, tryptic soy agar (TSA) was supplemented with 4.5-5% NaCl, 0.1-0.5% oxgall, and/or 1-2% sodium citrate, and adjusted to pH 8-9. A total of 21 Vibrio spp., 24 indicators, and 26 food-borne isolates were streaked on the modified media, followed by 24 h of incubation at 37 °C. While all the indicators and isolates failed to grow on TSA containing 5% NaCl, 0.5% oxgall, and 2% sodium citrate (TSAOSS1; pH 9), V. parahaemolyticus was culturable on this selective medium. Particularly, the ability of TSAOSS1 to quantify V. parahaemolyticus in oysters was superior to thiosulphate citrate bile salts sucrose (TCBS) agar. V. parahaemolyticus distinctly produced its white-yellowish, round, and edge-pointed colony on TSAOSS1. TSAOSS1 with high selectivity potentials over TCBS may be a promising alternative for detection of V. parahaemolyticus in seafoods or natural reservoirs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s10068-021-00877-0).

15.
Microvasc Res ; 136: 104165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33845105

RESUMEN

Phototherapy has been tried for treating cardiovascular diseases. In particular, ultraviolet and blue visible lights were suggested to be useful due to their nitric oxide (NO)-production ability in the skin. However, the effects of blue light on the arterial contractility are controversial. Here, we hypothesized that appropriate protocol of blue laser can induce selective vasorelaxation by activating vasodilating signaling molecules in arteries. Using organ chamber arterial mechanics, NO assay, Matrigel assay, and microarray, we showed that a 200-Hz, 300-µs, 445-nm pulsed-laser (total energy of 600 mJ; spot size 4 mm) induced selective vasorelaxation, without vasocontraction in rat mesenteric arteries. The laser stimulation increased NO production in the cord blood-endothelial progenitor cells (CB-EPCs). Both the laser-induced vasorelaxation and NO production were inhibited by a non-selective, pan-NO synthase inhibitor, L-NG-Nitro arginine methyl ester. Microarray study in CB-EPCs suggested up-regulation of cryptochrome (CRY)2 as well as NO synthase (NOS)1 and NOSTRIN (NOS trafficking) by the laser. In conclusion, this study suggests that the 445-nm blue puled-laser can induce vasorelaxation possibly via the CRY photoreceptors and NOSs activation. The blue laser-therapy would be useful for treating systemic hypertension as well as improving local blood flow depending on the area of irradiation.


Asunto(s)
Células Progenitoras Endoteliales/efectos de la radiación , Rayos Láser , Terapia por Luz de Baja Intensidad/instrumentación , Arterias Mesentéricas/efectos de la radiación , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Vasodilatación/efectos de la radiación , Animales , Células Cultivadas , Células Progenitoras Endoteliales/enzimología , Activación Enzimática , Sangre Fetal/citología , Regulación de la Expresión Génica , Humanos , Masculino , Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa/genética , Ratas Sprague-Dawley , Transducción de Señal
16.
Food Sci Biotechnol ; 30(1): 159-169, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33552627

RESUMEN

This study was conducted to examine the effect of formulated resuscitation-promoting broths on the revival of viable but nonculturable Vibrio parahaemolyticus induced by cold and starvation stresses. Vibrio parahaemolyticus was incubated in artificial sea water at 4 °C for more than 8 months until this bacterium became undetectable, while retaining its intact cell count of more than 105 CFU/field over time. On day 250, V. parahaemolyticus was collected and enriched in tryptic soy broth supplemented with 3% NaCl, 10,000 U/mg catalase, 2% sodium pyruvate, 20 mM MgSO4, 5 mM EDTA, and a cell-free supernatant taken from V. parahaemolyticus ATCC 17802 in the stationary phase (pH 8). V. parahaemolyticus returned partially to a culturable state with a maximal cell density of 7.91 log CFU/mL in this formulated medium following 7 days of enrichment at 25 °C. In contrast, no V. parahaemolyticus was resuscitated when enriched in alkaline peptone water and tryptic soy broth.

17.
Eur J Pharmacol ; 891: 173707, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33137332

RESUMEN

Darifenacin, an anticholinergic agent, has been used to treat overactive bladder syndrome. Despite its extensive clinical use, there is little information about the effect of darifenacin on vascular ion channels, specifically K+ channels. This study aimed to investigate the effect of the anti-muscarinic drug darifenacin on voltage-gated K+ (Kv) channels, vascular contractility, and coronary blood flow in rabbit coronary arteries. We used the whole-cell patch-clamp technique to evaluate the effect of darifenacin on Kv channels. Darifenacin inhibited the Kv current in a concentration-dependent manner. Applying 1 µM darifenacin shifted the activation and inactivation curves toward a more positive and negative potential, respectively. Darifenacin slowed the time constants of recovery from inactivation. Furthermore, blockade of the Kv current with darifenacin was increased gradually by applying a train of pulses, indicating that darifenacin inhibited Kv currents in a use- (state)-dependent manner. The darifenacin-mediated inhibition of Kv currents was associated with the Kv1.5 subtype, not the Kv2.1 or Kv7 subtype. Applying another anti-muscarinic drug atropine or ipratropium did not affect the Kv current or change the inhibitory effect of darifenacin. Isometric organ bath experiments using isolated coronary arteries were applied to evaluate whether darifenacin-induced inhibition of the Kv channel causes vasocontraction. Darifenacin substantially induced vasocontraction. Furthermore, darifenacin caused membrane depolarization and decreased coronary blood flow. From these results, we concluded that darifenacin inhibits the Kv currents in concentration- and use- (state)-dependent manners. Inhibition of the Kv current with darifenacin occurred by shifting the steady-state activation and inactivation curves regardless of its anti-muscarinic effect.


Asunto(s)
Benzofuranos/farmacología , Vasos Coronarios/efectos de los fármacos , Canal de Potasio Kv1.5/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Pirrolidinas/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Vasos Coronarios/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Cinética , Canal de Potasio Kv1.5/metabolismo , Masculino , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Conejos
18.
Sci Rep ; 10(1): 13127, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753578

RESUMEN

Diffuse optical tomography (DOT) non-invasively measures the functional characteristics of breast lesions using near infrared light to probe tissue optical properties. This study aimed to evaluate a new digital breast tomosynthesis (DBT)/DOT fusion imaging technique and obtain preliminary data for breast cancer detection. Twenty-eight women were prospectively enrolled and underwent both DBT and DOT examinations. DBT/DOT fusion imaging was created after acquisition of both examinations. Two breast radiologists analyzed DBT and DOT images independently, and then finally evaluated the fusion images. The diagnostic performance of each reading session was compared and interobserver agreement was assessed. The technical success rate was 96.4%, with one failure due to an error during DOT data storage. Among the 27 women finally included in the analysis, 13 had breast cancer. The areas under the receiver operating characteristic curve (AUCs) for DBT were 0.783 and 0.854 for readers 1 and 2, respectively. DOT showed comparable diagnostic performance to DBT for both readers. The AUCs were significantly improved (P = 0.004) when the DBT/DOT fusion images were used. Interobserver agreements were highest for the DBT/DOT fusion images. In conclusion, this study suggests that DBT/DOT fusion imaging technique appears to be a promising tool for breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Mamografía , Tomografía Óptica , Adulto , Femenino , Humanos , Persona de Mediana Edad
19.
Toxicol Appl Pharmacol ; 403: 115153, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717242

RESUMEN

We investigated the vasodilatory effects of empagliflozin (a sodium-glucose co-transporter 2 inhibitor) and the underlying mechanisms using rabbit aorta. Empagliflozin induced vasodilation in a concentration-dependent manner independently of the endothelium. Likewise, pretreatment with the nitric oxide synthase inhibitor L-NAME or the SKca inhibitor apamin together with the IKca inhibitor TRAM-34 did not impact the vasodilatory effects of empagliflozin. Pretreatment with the adenylyl cyclase inhibitor SQ22536 or a guanylyl cyclase inhibitor ODQ or a protein kinase A (PKA) inhibitor KT5720 also did not alter the vasodilatory response of empagliflozin. However, the vasodilatory effects of empagliflozin were significantly reduced by pretreatment with the protein kinase G (PKG) inhibitor KT5823. Although application of the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, or inwardly rectifying K+ (Kir) channel inhibitor Ba2+ did not impact the vasodilatory effects of empagliflozin, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-AP reduced the vasodilatory effects of empagliflozin. Pretreatment with DPO-1 (Kv1.5 channel inhibitor), guangxitoxin (Kv2.1 channel inhibitor), or linopirdine (Kv7 channel inhibitor) had little effect on empagliflozin-induced vasodilation. Application of nifedipine (L-type Ca2+ channel inhibitor) or thapsigargin (sarco-endoplasmic reticulum Ca2+-ATPase pump inhibitor) did not impact empagliflozin-induced vasodilation. Therefore, empagliflozin induces vasodilation by activating PKG and Kv channels.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Glucósidos/farmacología , Canales de Potasio con Entrada de Voltaje/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Vasodilatación/efectos de los fármacos , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Compuestos de Bencidrilo/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/química , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Estructura Molecular , Conejos , Inhibidores del Cotransportador de Sodio-Glucosa 2/química
20.
Eur J Pharmacol ; 882: 173243, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32535099

RESUMEN

This study investigated the vasodilatory effects and acting mechanism of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Tests were conducted in aortic rings pre-contracted with phenylephrine. Gemigliptin induced dose-dependent vasodilation of the aortic smooth muscle. Several pre-treatment groups were used to investigate the mechanism of action. While pre-treatment with paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, glibenclamide, an ATP-sensitive K+ channel inhibitor, and Ba2+, an inwardly rectifying K+ channel inhibitor, had no impact on the vasodilatory effect of gemigliptin, pre-treatment with 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, effectively attenuated the vasodilatory action of gemigliptin. In addition, pre-treatment with sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of gemigliptin. cAMP/PKA-related or cGMP/PKG-related signaling pathway inhibitors, including adenylyl cyclase inhibitor SQ 22536, PKA inhibitor KT 5720, guanylyl cyclase inhibitor ODQ, and PKG inhibitor KT 5823 did not alter the vasodilatory effect of gemigliptin. Similarly, elimination of the endothelium and pre-treatment with a nitric oxide (NO) synthase inhibitor (L-NAME) or small- and intermediate-conductance Ca2+-activated K+ channels (apamin and TRAM-34, respectively) did not change the gemigliptin effect. These findings suggested that gemigliptin induces vasodilation through the activation of Kv channels and SERCA pumps independent of cAMP/PKA-related or cGMP/PKG-related signaling pathways and the endothelium. Therefore, caution is required when prescribing gemigliptin to the patients with hypotension and diabetes.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Piperidonas/farmacología , Canales de Potasio con Entrada de Voltaje/fisiología , Pirimidinas/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Vasodilatadores/farmacología , Animales , Aorta Torácica/fisiología , Masculino , Músculo Liso Vascular/fisiología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...