Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0303784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905286

RESUMEN

Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Diseño de Fármacos , Indoles/química , Indoles/farmacología , Indoles/farmacocinética , Teoría Funcional de la Densidad
2.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37599470

RESUMEN

Cervical Cancer (CC) is one of the most common types of cancer in women worldwide, with a significant number of deaths reported yearly. Despite the various treatment options available, the high mortality rate associated with CC highlights the need to develop new and effective therapeutic agents. In this study, we have screened the complete prepared FDA library against the Mitotic kinesin-like protein 1, Cyclin B1, DNA polymerase, and MCM10-ID using three glide-based molecular docking algorithms: HTVS, SP and XP to produce a robust calculation. All four proteins are crucial proteins that actively participate in CC development, and inhibiting them together can be a game-changer step for multitargeted drug designing. Our multitargeted screening identified Sodium (Na) Danshensu, a natural FDA-approved phenolic compound of caffeic acid derivatives isolated from Salvia miltiorrhiza. The docking score ranges from -5.892 to -13.103 Kcal/mol, and the screening study was evaluated with the pharmacokinetics and interaction fingerprinting to identify the pattern of interactions that revealed that the compound has bound to the best site it can be fitted to where maximum bonds were created to make the complex stable. The molecular dynamics simulations for 100 ns were then extended to validate the stability of the protein-ligand complexes. The results provide insight into the repurposing, and Na-danshensu exhibited strong binding affinity and stable complex formation with the target proteins, indicating its potential as a multitargeted drug against CC.Communicated by Ramaswamy H. Sarma.

3.
Nutrients ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36839155

RESUMEN

Osteoarthritis (OA) is a common disorder that can affect any joint in the human body. This study aimed to examine the anti-arthritic properties of high and low doses of grapefruit juice (GFJ), as grapefruit appears to contain anti-inflammatory biochemicals. Forty male Sprague-Dawley rats weighing 170-180 g were divided into five groups. These groups comprised the untreated control group and osteoarthritic (Osteo) rats administered intra-articular injections of Freund's complete adjuvant (CFA; 0.5 mL; 1 mg/mL) as follows: OA rats administered low doses of GFJ (Osteo+GFJ (low); 5 mL/kg body weight (BW)); OA rats administered high doses of GFJ (Osteo+GFJ (high); 27 mL/kg BW); and OA rats administered diclofenac sodium (Osteo+Diclo) as a reference drug. Injections of CFA induced OA, as indicated by a significant increase in the serum levels of the inflammatory biomarkers C-reactive protein (CRP), interleukin-1ß (IL-1ß), and (prostaglandin (PGE2), as well as matrix metalloproteinases (MMP-1) and cathepsin K. The synovial levels of glycosaminoglycans (GAGs), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6) also increased, with a concomitant reduction in osteocalcin levels. The administration of either high or low doses of GFJ reduced CRP, IL-1ß, PGE2, MMP-1, cathepsin K, and osteocalcin while increasing the synovial levels of GAGs, TNF-α, and IL-6, slowing cartilage degradation and boosting joint function. The results showed comparable histopathological and biochemical responses. A comparison of the treatments showed that high-dose GFJ had a greater chondroprotective effect than low-dose GFJ.


Asunto(s)
Citrus paradisi , Jugos de Frutas y Vegetales , Osteoartritis de la Rodilla , Animales , Masculino , Ratas , Catepsina K , Citrus paradisi/química , Dinoprostona , Adyuvante de Freund , Interleucina-6 , Metaloproteinasa 1 de la Matriz , Osteoartritis de la Rodilla/inducido químicamente , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteocalcina , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa
4.
Front Pharmacol ; 14: 1325184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348349

RESUMEN

At the molecular level, several developmental signaling pathways, such as Wnt/ß-catenin, have been associated with the initiation and subsequent progression of prostate carcinomas. The present report elucidated the anti-cancerous attributes of an anthraquinone, aloe-emodin (AE), against androgen-independent human prostate cancer DU145 cells. The cytotoxicity profiling of AE showed that it exerted significant cytotoxic effects and increased lactose dehydrogenase levels in DU145 cells (p < 0.01 and p < 0.001). AE also induced considerable reactive oxygen species (ROS)-mediated oxidative stress, which escalated at higher AE concentrations of 20 and 25 µM. AE also efficiently instigated nuclear fragmentation and condensation concomitantly, followed by the activation of caspase-3 and -9 within DU145 cells. AE further reduced the viability of mitochondria with increased cytosolic cytochrome-c levels (p < 0.01 and p < 0.001) in DU145 cells. Importantly, AE exposure was also correlated with reduced Wnt2 and ß-catenin mRNA levels along with their target genes, including cyclin D1 and c-myc. Furthermore, the molecular mechanism of AE was evaluated by performing molecular docking studies with Wnt2 and ß-catenin. Evidently, AE exhibited good binding energy scores toward Wnt2 and ß-catenin comparable with their respective standards, CCT036477 (Wnt2 inhibitor) and FH535 (ß-catenin inhibitor). Thus, it may be considered that AE was competent in exerting anti-growth effects against DU145 androgen-independent prostate cancer cells plausibly by modulating the expression of Wnt/ß-catenin signaling.

5.
Mol Biotechnol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513873

RESUMEN

Neurodegenerative disorders such as Alzheimer's disease (AD), Glioblastoma multiforme (GBM), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) are some of the most prevalent neurodegenerative disorders in humans. Even after a variety of advanced therapies, prognosis of all these disorders is not favorable, with survival rates of 14-20 months only. To further improve the prognosis of these disorders, it is imperative to discover new compounds which will target effector proteins involved in these disorders. In this study, we have focused on in silico screening of marine compounds against multiple target proteins involved in AD, GBM, ALS, and PD. Fifty marine-origin compounds were selected from literature, out of which, thirty compounds passed ADMET parameters. Ligand docking was performed after ADMET analysis for AD, GBM, ALS, and PD-associated proteins in which four protein targets Keap1, Ephrin A2, JAK3 Kinase domain, and METTL3-METTL14 N6-methyladenosine methyltransferase (MTA70) were found to be binding strongly with the screened compound Dioxinodehydroeckol (DHE). Molecular dynamics simulations were performed at 100 ns with triplicate runs to validate the docking score and assess the dynamics of DHE interactions with each target protein. The results indicated Dioxinodehydroeckol, a novel marine compound, to be a putative inhibitor among all the screened molecules, which might be effective against multiple target proteins involved in neurological disorders, requiring further in vitro and in vivo validations.

6.
Front Microbiol ; 13: 990169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187977

RESUMEN

Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.

7.
Front Immunol ; 12: 648250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248936

RESUMEN

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.


Asunto(s)
Antivirales/farmacología , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Diterpenos/farmacología , Desarrollo de Medicamentos/métodos , SARS-CoV-2/fisiología , Andrographis/inmunología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Tratamiento Farmacológico de COVID-19
8.
J Comput Biol ; 27(5): 786-795, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31460787

RESUMEN

Inframe insertion and deletion mutations (indels) are commonly observed in cancer samples accounting for over 1% of all reported mutations. Few somatic inframe indels have been clinically documented as pathogenic and at present there are few tools to predict which indels drive cancer development. However, indels are a common feature of hereditary disease and several tools have been developed to predict the impact of inframe indels on protein function. In this study, we test whether six of the popular prediction tools can be adapted to test for cancer driver mutations and then develop a new algorithm (IndelRF) that discriminates between recurrent indels in known cancer genes and indels not associated with disease. IndelRF was developed to try and identify somatic, driver, and inframe indel mutations. Using a random forest classifier with 11 features, IndelRF achieved accuracies of 0.995 and 0.968 for insertion and deletion mutations, respectively. Finally, we use IndelRF to classify the inframe indel cancer mutations in the MOKCa database.


Asunto(s)
Biología Computacional/métodos , Mutación INDEL/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Algoritmos , Bases de Datos Genéticas , Genoma Humano/genética , Humanos , Neoplasias/patología , Oncogenes/genética
9.
Biochem Soc Trans ; 44(3): 925-31, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284061

RESUMEN

All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer.


Asunto(s)
Carcinogénesis/genética , Genes Supresores de Tumor/ética , Mutación , Oncogenes/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...