Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452090

RESUMEN

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Asunto(s)
Células Madre Adultas , Plasticidad de la Célula , Epidermis , Folículo Piloso , Tretinoina , Cicatrización de Heridas , Animales , Ratones , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/fisiología , Epidermis/efectos de los fármacos , Epidermis/fisiología , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/fisiología , Tretinoina/metabolismo , Tretinoina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Rejuvenecimiento/fisiología , Técnicas de Cultivo de Célula , Neoplasias/patología , Ratones Endogámicos C57BL
2.
Nat Cell Biol ; 25(8): 1185-1195, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488435

RESUMEN

During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.


Asunto(s)
Células Madre Adultas , Proteómica , Animales , Ratones , Células Madre Adultas/metabolismo , Diferenciación Celular , Cromatina/genética , Epigénesis Genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
3.
G3 (Bethesda) ; 12(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35944214

RESUMEN

Protein fusions are frequently used for fluorescence imaging of individual molecules, both in vivo and in vitro. The SNAP, CLIP, HALO (aka HaloTag7), and DHFR protein tags can be linked to small molecule dyes that provide brightness and photo-stability superior to fluorescent proteins. To facilitate fluorescent dye tagging of proteins in the yeast Saccharomyces cerevisiae, we constructed a modular set of vectors with various combinations of labeling protein tags and selectable markers. These vectors can be used in combination to create strains where multiple proteins labeled with different colored dyes can be simultaneously observed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Colorantes Fluorescentes , Vectores Genéticos/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1460-1474, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726173

RESUMEN

The initiation of infection of host tissues by Staphylococcus aureus requires a family of staphylococcal adhesive proteins containing serine-aspartate repeat (SDR) domains, such as ClfA. The O-linked glycosylation of the long-chain SDR domain mediated by SdgB and SdgA is a key virulence factor that protects the adhesive SDR proteins against host proteolytic attack in order to promote successful tissue colonization, and has also been implicated in staphylococcal agglutination, which leads to sepsis and an immunodominant epitope for a strong antibody response. Despite the biological significance of these two glycosyltransferases involved in pathogenicity and avoidance of the host innate immune response, their structures and the molecular basis of their activity have not been investigated. This study reports the crystal structures of SdgB and SdgA from S. aureus as well as multiple structures of SdgB in complex with its substrates (for example UDP, N-acetylglucosamine or SDR peptides), products (glycosylated SDR peptides) or phosphate ions. Together with biophysical and biochemical analyses, this structural work uncovered the novel mechanism by which SdgB and SdgA carry out the glycosyl-transfer process to the long SDR region in SDR proteins. SdgB undergoes dynamic changes in its structure such as a transition from an open to a closed conformation upon ligand binding and takes diverse forms, both as a homodimer and as a heterodimer with SdgA. Overall, these findings not only elucidate the putative role of the three domains of SdgB in recognizing donor and acceptor substrates, but also provide new mechanistic insights into glycosylation of the SDR domain, which can serve as a starting point for the development of antibacterial drugs against staphylococcal infections.


Asunto(s)
Staphylococcus aureus , Humanos , Cristalografía por Rayos X , Glicosilación , Modelos Moleculares , Conformación Proteica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Especificidad por Sustrato , Factores de Virulencia/química , Factores de Virulencia/metabolismo
5.
Mol Cell ; 81(17): 3576-3588.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34384542

RESUMEN

RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética/fisiología , Núcleo Celular/metabolismo , Complejo Mediador/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula , TATA Box/genética , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/metabolismo , Transcripción Genética/genética
6.
Proc Natl Acad Sci U S A ; 117(51): 32348-32357, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293419

RESUMEN

In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/genética , Cinética , Modelos Teóricos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Imagen Individual de Molécula/métodos , Factores de Elongación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA