Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 160: 213836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599042

RESUMEN

The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.


Asunto(s)
Mecanotransducción Celular , Células-Madre Neurales , Proteína de Unión al GTP rhoA , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de la radiación , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Luz , Diferenciación Celular , Humanos , Matriz Extracelular/metabolismo , Animales
2.
Biomater Sci ; 10(23): 6768-6777, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36314115

RESUMEN

During differentiation, neural stem cells (NSCs) encounter diverse cues from their niche, including not only biophysical cues from the extracellular matrix (ECM) but also cell-cell communication. However, it is still poorly understood how these cues cumulatively regulate mechanosensitive NSC fate commitment, especially in 3D matrices that better mimic in vivo systems. Here, we develop a click chemistry-based 3D hydrogel material system to fully decouple cell-cell and cell-ECM interactions by functionalizing small peptides: the HAVDI motif from N-cadherin and RGD motif from fibronectin. The hydrogel is engineered to range in stiffness from 75 Pa to 600 Pa. Interestingly, HAVDI-mediated interaction shows increased neurogenesis, except for the softest gel (75 Pa). Moreover, the HAVDI ligation attenuates the mechanosensing state of NSCs, exhibiting restricted cytoskeletal formation and RhoA signaling. Given that mechanosensitive neurogenesis has been reported to be regulated by cytoskeletal formation, our finding suggests that the enhanced neurogenesis in the HAVDI-modified gel may be highly associated with the HAVDI interaction-mediated attenuation of mechanosensing. Furthermore, NSCs in the HAVDI gel shows higher ß-catenin activity, which has been known to promote neurogenesis. Our findings provide critical insights into how mechanosensitive NSC fate commitment is regulated as a consequence of diverse interactions in 3D microenvironments.


Asunto(s)
Cadherinas , Células-Madre Neurales , Adhesivos , Neurogénesis , Diferenciación Celular/fisiología , Hidrogeles/farmacología
3.
Sci Adv ; 8(15): eabm4646, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427160

RESUMEN

While extracellular matrix (ECM) mechanics strongly regulate stem cell commitment, the field's mechanistic understanding of this phenomenon largely derives from simplified two-dimensional (2D) culture substrates. Here, we found a 3D matrix-specific mechanoresponsive mechanism for neural stem cell (NSC) differentiation. NSC lineage commitment in 3D is maximally stiffness sensitive in the range of 0.1 to 1.2 kPa, a narrower and more brain-mimetic range than we had previously identified in 2D (0.75 to 75 kPa). Transcriptomics revealed stiffness-dependent up-regulation of early growth response 1 (Egr1) in 3D but not in 2D. Egr1 knockdown enhanced neurogenesis in stiff ECMs by driving ß-catenin nuclear localization and activity in 3D, but not in 2D. Mechanical modeling and experimental studies under osmotic pressure indicate that stiff 3D ECMs are likely to stimulate Egr1 via increases in confining stress during cell volumetric growth. To our knowledge, Egr1 represents the first 3D-specific stem cell mechanoregulatory factor.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular , Linaje de la Célula , Matriz Extracelular , Neurogénesis
4.
J Mater Chem B ; 9(8): 2084-2091, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33595038

RESUMEN

Preserving the self-renewal capability of undifferentiated human neural stem cells (hNSCs) is one of the crucial prerequisites for efficient hNSC-based regenerative medicine. Considering that basic fibroblast growth factor (bFGF) is one of the key contributing factors in maintaining the self-renewal property of hNSCs, the bioactivity and stability of bFGF in the hNSC culture should be regulated carefully. In this study, we developed a functional polymer film of poly(glycidyl methacrylate (GMA)-co-N,N-dimethylaminoethyl methacrylate (DMAEMA)) (coGD, or p(GMA-co-DMAEMA)) via initiated chemical vapor deposition (iCVD), which facilitated a stable, electrostatic adsorption of heparin and subsequent immobilization of bFGF. The bFGF-immobilized coGD surface substantially enhanced the proliferation rate and neurosphere forming ability of hNSCs compared to tissue culture plate (TCP). The expression of the stemness markers of hNSCs such as NESTIN and SOX-2 was also upregulated prominently on the coGD surface. Also, the hNSCs cultured on the coGD surface showed enhanced neurogenesis upon spontaneous differentiation. The immobilized bFGF on the coGD surface stimulated the expression of bFGF receptors and subsequently activated the mitogen-activated protein kinase (MAPK) pathway, attributed to the increase in self-renewal property of hNSCs. Our results indicate that the coGD surface allowed in situ heparin-mediated bFGF immobilization, which served as a robust platform to generate hNSC neurospheres with enhanced self-renewal and differentiation capabilities and thereby will prompt an advance in the field of therapeutics of neurodegenerative diseases.


Asunto(s)
Autorrenovación de las Células/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/química , Heparina/química , Proteínas Inmovilizadas/química , Células-Madre Neurales/efectos de los fármacos , Polímeros/farmacología , Electricidad Estática , Proliferación Celular/efectos de los fármacos , Humanos , Células-Madre Neurales/citología , Neurogénesis/efectos de los fármacos , Polímeros/química , Propiedades de Superficie
5.
ACS Synth Biol ; 9(9): 2274-2281, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32794731

RESUMEN

The field of optogenetics uses genetically encoded photoswitches to modulate biological phenomena with high spatiotemporal resolution. We report a set of rationally designed optogenetic photoswitches that use the photolyase homology region of A. thaliana cryptochrome 2 (Cry2PHR) as a building block and exhibit highly efficient and tunable clustering in a blue-light dependent manner. CL6mN (Cry2-mCherry-LRP6c with N mutated PPPAP motifs) proteins were designed by mutating and/or truncating five crucial PPP(S/T)P motifs near the C-terminus of the optogenetic Wnt activator Cry2-mCherry-LRP6c, thus eliminating its Wnt activity. Light-induced CL6mN clusters have significantly greater dissociation half-lives than clusters of wild-type Cry2PHR. Moreover, the dissociation half-lives can be tuned by varying the number of PPPAP motifs, with the half-life increasing as much as 6-fold for a variant with five motifs (CL6m5) relative to Cry2PHR. Finally, we demonstrate the compatibility of CL6mN with previously reported Cry2-based photoswitches by optogenetically activating RhoA in mammalian cells.


Asunto(s)
Luz , Optogenética/métodos , Proteínas Recombinantes de Fusión/metabolismo , Secuencias de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Criptocromos/química , Criptocromos/genética , Criptocromos/metabolismo , Células HEK293 , Semivida , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Vía de Señalización Wnt , Proteína Fluorescente Roja
6.
Adv Mater ; 32(16): e1907225, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32157771

RESUMEN

Cell sheet engineering, a technique utilizing a monolayer cell sheet, has recently emerged as a promising technology for scaffold-free tissue engineering. In contrast to conventional tissue-engineering approaches, the cell sheet technology allows cell harvest as a continuous cell sheet with intact extracellular matrix proteins and cell-cell junction, which facilitates cell transplantation without any other artificial biomaterials. A facile, non-thermoresponsive method is demonstrated for a rapid but highly reliable platform for cell-sheet engineering. The developed method exploits the precise modulation of cell-substrate interactions by controlling the surface energy of the substrate via a series of functional polymer coatings to enable prompt cell sheet harvesting within 100 s. The engineered surface can trigger an intrinsic cellular response upon the depletion of divalent cations, leading to spontaneous cell sheet detachment under physiological conditions (pH 7.4 and 37 °C) in a non-thermoresponsive manner. Additionally, the therapeutic potential of the cell sheet is successfully demonstrated by the transplantation of multilayered cell sheets into mouse models of diabetic wounds and ischemia. These findings highlight the ability of the developed surface for non-thermoresponsive cell sheet engineering to serve as a robust platform for regenerative medicine and provide significant breakthroughs in cell sheet technology.


Asunto(s)
Polímeros/química , Ingeniería de Tejidos/métodos , Adsorción , Fibronectinas/química , Propiedades de Superficie , Temperatura , Factores de Tiempo
7.
ACS Appl Bio Mater ; 3(11): 7654-7665, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019506

RESUMEN

For efficient therapeutic use of human mesenchymal stem cells (hMSCs), maximizing their self-renewal performance and multipotency must be fully retained. However, conventional trypsin-based cell passaging methods are known to damage the attached cells to be detached because of the inherent corrosive nature of trypsin, and continuous passaging substantially degrades the self-renewal and differentiation capacity of hMSCs. Therefore, it is imperative to secure a damage-free passaging method that supports cell growth as well as their stem cell function. Here, an enzyme-free cell detachment method using a poly(ethylene glycol dimethacrylate) (pEGDMA)-coated surface is developed, which allows for reduced integrin-dependent cell adhesion. Cell detachment can be facilitated simply by treating the plated cells on the pEGDMA surface with Ca2+ and Mg2+-depleted DPBS. Spontaneous cell detachment occurs within 10 min with the full retention of the cell viability and proliferation ability of hMSCs. Especially, the detachment method can minimize the surface protein damage of hMSCs compared to the conventional trypsin treatment and preserve the self-renewal property and differentiation capacity even with an increased passage number over 10. The developed enzyme-free detachment method using the pEGDMA-coated surface is highly promising for a culture platform to broaden its application to the field of tissue engineering and regenerative medicine.

8.
ACS Appl Mater Interfaces ; 11(19): 17247-17255, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31009192

RESUMEN

As neural stem cells (NSCs) interact with biophysical cues from their niche during development, it is important to understand the biomolecular mechanism of how the NSCs process these biophysical cues to regulate their behaviors. In particular, anisotropic geometric cues in micro-/nanoscale have been utilized to investigate the biophysical effect of the structure on NSCs behaviors. Here, a series of new nanoscale anisotropic wrinkle structures with the a range of wavelength scales (from 50 nm to 37 µm) was developed to demonstrate the effect of the anisotropic nanostructure on the fate commitment of NSCs. Intriguingly, two distinct characteristic length scales promoted the neurogenesis. Each wavelength scale showed a striking variation in terms of dependency on the directionality of the structures, suggesting the existence of at least two different ways in the processing of anisotropic geometries for neurogenesis. Furthermore, the combined effect of the two distinctive length scales was observed by employing hierarchical multiscale wrinkle structures with two characteristic neurogenesis-promoting wavelengths. Taken together, the wrinkle structure system developed in this study can serve as an effective platform to advance the understanding of how cells sense anisotropic geometries for their specific cellular behaviors. Furthermore, this could provide clues for improving nerve regeneration system of stem cell therapies.


Asunto(s)
Nanoestructuras/química , Regeneración Nerviosa , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Anisotropía , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Células-Madre Neurales/metabolismo , Trasplante de Células Madre
9.
Cancer Res ; 78(24): 6890-6902, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30352813

RESUMEN

: Although cancer stem cells (CSC) are thought to be responsible for tumor recurrence and resistance to chemotherapy, CSC-related research and drug development have been hampered by the limited supply of diverse, patient-derived CSC. Here, we present a functional polymer thin film (PTF) platform that promotes conversion of cancer cells to highly tumorigenic three-dimensional (3D) spheroids without the use of biochemical or genetic manipulations. Culturing various human cancer cells on the specific PTF, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) (pV4D4), gave rise to numerous multicellular tumor spheroids within 24 hours with high efficiency and reproducibility. Cancer cells in the resulting spheroids showed a significant increase in the expression of CSC-associated genes and acquired increased drug resistance compared with two-dimensional monolayer-cultured controls. These spheroids also exhibited enhanced xenograft tumor-forming ability and metastatic capacity in nude mice. By enabling the generation of tumorigenic spheroids from diverse cancer cells, the surface platform described here harbors the potential to contribute to CSC-related basic research and drug development. SIGNIFICANCE: A new cell culture technology enables highly tumorigenic 3D spheroids to be easily generated from various cancer cell sources in the common laboratory.


Asunto(s)
Células Madre Neoplásicas/citología , Polímeros/química , Esferoides Celulares/citología , Animales , Carcinogénesis/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Genoma , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Reproducibilidad de los Resultados
10.
ACS Appl Mater Interfaces ; 10(40): 33891-33900, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30207452

RESUMEN

Human neural stem cells (hNSCs) can alter their fate choice in response to the biophysical cues provided during development. In particular, it has been reported that the differentiation of neural stem cells (NSCs) is enhanced by anisotropic contact, which facilitates focal adhesion (FA) formation and cytoskeletal organization. However, a biomolecular mechanism governing how the cells process the biophysical cues from these anisotropic geometries to their fate commitment is still poorly understood due to the limited availability of geometrical diversities (contact width above 50 nm) applicable to cell studies. Here, we firstly demonstrate that the biomolecular mechanism for enhanced neurogenesis on an anisotropic nanostructure is critically dependent on the resolution of a contact feature. We observed a totally different cellular response to anisotropic geometries by first utilizing a high-resolution nanogroove (HRN) structure with an extremely narrow contact width (15 nm). The width scale is sufficiently low to suppress the integrin clustering and enable us to elucidate how the contact area influences the neurogenesis of hNSCs at an aligned state. Both the HRN and control nanogroove (CN) pattern with a contact width of 1 µm induced the spontaneous topographic alignment of hNSCs. However, intriguingly, the focal adhesion (FA) formation and cytoskeletal reorganization were substantially limited on the HRN, although the cells on the CN showed enhanced FA formation compared with flat surfaces. In particular, the hNSCs on the HRN surface exhibited a strikingly lower fraction of nuclear yes-associated protein (YAP) than on the CN surface, which was turned out to be regulated by Rho GTPase in the same way as the cells sense the mechanical properties of the environment. Considering the previously reported role of YAP on neurogenesis, our finding newly substantiates that YAP and Rho GTPase also can be transducers of hNSCs to process topographical alternation to fate decision. Furthermore, this study with the unprecedented high-resolution nanostructure suggests a novel geometry sensing model where the functional crosstalk between YAP signaling and Rho GTPase integrally regulate the fate commitment of the hNSCs.


Asunto(s)
Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Nanoestructuras , Células-Madre Neurales , Anisotropía , Proteínas de Ciclo Celular , Línea Celular , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rho/metabolismo
11.
Sci Adv ; 4(8): eaat4978, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30151429

RESUMEN

Both high static repellency and pressure resistance are critical to achieving a high-performance omniphobic surface. The cuticles of springtails have both of these features, which result from their hierarchical structure composed of primary doubly reentrant nanostructures on secondary microgrooves. Despite intensive efforts, none of the previous studies that were inspired by the springtail were able to simultaneously achieve both high static repellency and pressure resistance because of a general trade-off between these characteristics. We demonstrate for the first time a springtail-inspired superomniphobic surface displaying both features by fabricating a hierarchical system consisting of serif-T-shaped nanostructures on microscale wrinkles, overcoming previous limitations. Our biomimetic strategy yielded a surface showing high repellency to diverse liquids, from water to ethanol, with a contact angle above 150°. Simultaneously, the surface was able to endure extreme pressure resulting from the impacts of drops of water and of ethylene glycol with We >> 200, and of ethanol with We ~ 53, which is the highest pressure resistance ever reported. Overall, the omniphobicity of our springtail-inspired fabricated system was found to be superior to that of the natural springtail cuticle itself.

12.
ACS Nano ; 10(11): 9909-9918, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27792310

RESUMEN

In vitro culture systems for primary neurons have served as useful tools for neuroscience research. However, conventional in vitro culture methods are still plagued by challenging problems with respect to applications to neurodegenerative disease models or neuron-based biosensors and neural chips, which commonly require long-term culture of neural cells. These impediments highlight the necessity of developing a platform capable of sustaining neural activity over months. Here, we designed a series of polymeric bilayers composed of poly(glycidyl methacrylate) (pGMA) and poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA), designated pGMA:pDMAEMA, using initiated chemical vapor deposition (iCVD). Harnessing the surface-growing characteristics of iCVD polymer films, we were able to precisely engraft acetylcholine-like functionalities (tertiary amine and quaternary ammonium) onto cell culture plates. Notably, pGD3, a pGMA:pDMAEMA preparation with the highest surface composition of quaternary ammonium, fostered the most rapid outgrowth of neural cells. Clear contrasts in neural growth and survival between pGD3 and poly-l-lysine (PLL)-coated surfaces became apparent after 30 days in vitro (DIV). Moreover, brain-derived neurotrophic factor level continuously accumulated in pGD3-cultured neurons, reaching a 3-fold increase at 50 DIV. Electrophysiological measurements at 30 DIV revealed that the pGD3 surface not only promoted healthy maturation of hippocampal neurons but also enhanced the function of hippocampal ionotropic glutamate receptors in response to synaptic glutamate release. Neurons cultured long-term on pGD3 also maintained their characteristic depolarization-induced Ca2+ influx functions. Furthermore, primary hippocampal neurons cultured on pGD3 showed long-term survival in a stable state up to 90 days-far longer than neurons on conventional PLL-coated surfaces. Taken together, our findings indicate that a polymer thin film with optimal acetylcholine-like functionality enables a long-term culture and survival of primary neurons.


Asunto(s)
Acetilcolina/farmacología , Técnicas de Cultivo de Célula , Hipocampo/citología , Neuronas , Polímeros , Células Cultivadas , Humanos
13.
Adv Healthc Mater ; 4(15): 2229-36, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26346613

RESUMEN

Drug delivery through mucosae has received huge research attention owing to its advantageous characteristics such as accurate dose control and the avoidance of premature metabolism of vulnerable drugs by oral administration. However, body fluid in mucosae may dissolve the drug, releasing it to unwanted directions. Here, a Janus drug delivery patch with monodirectional diffusion property is devised to deliver drugs efficiently and to overcome the issue of unwanted drug release. A polyester fabric is coated with a hydrophobic polymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl methacrylate), via initiated chemical vapor deposition. Subsequently, hydrophilicity is rendered selectively on one surface by base-catalyzed hydrolysis to obtain a Janus substrate with both hydrophobic and hydrophilic surfaces. The hydrophilic surface of the Janus substrate is further coated with resveratrol-loaded hydrogel to produce a Janus drug delivery patch. The fabricated patch efficiently blocks fluid penetration from one side to the other in mucous environment. Delivery of resveratrol through hairless mouse skin and reconstructed human mucosae using Janus patch shows higher permeation flux compared to bare control patch. The Janus drug delivery patch shown in this study can be a useful tool for efficient transmucosal delivery of various kinds of drugs.


Asunto(s)
Administración Oral , Sistemas de Liberación de Medicamentos/métodos , Mucosa Bucal/metabolismo , Parche Transdérmico , Animales , Liberación de Fármacos , Humanos , Hidrogeles/química , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Mucosa Bucal/efectos de los fármacos , Polímeros/química , Resveratrol , Estilbenos/administración & dosificación , Estilbenos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...