Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(6): 1158-1172.e6, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38447581

RESUMEN

MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.


Asunto(s)
MicroARNs , Procesamiento Postranscripcional del ARN , Humanos , MicroARNs/metabolismo , ARN Interferente Pequeño , Ribonucleasa III/genética
2.
Mol Cell ; 81(16): 3422-3439.e11, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34320405

RESUMEN

Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). More than 1,800 miRNA loci are annotated in humans, but it remains largely unknown whether and at which sites pri-miRNAs are cleaved by DROSHA. Here, we performed in vitro processing on a full set of human pri-miRNAs (miRBase version 21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs on the basis of DROSHA dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing and unproductive cleavage events such as "nick" or "inverse" processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.


Asunto(s)
MicroARNs/genética , Procesamiento Postranscripcional del ARN/genética , Ribonucleasa III/genética , Factores de Empalme Serina-Arginina/genética , Sitios de Unión/genética , Genoma Humano/genética , Células HEK293 , Humanos , Interferencia de ARN
3.
Nat Commun ; 12(1): 880, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563981

RESUMEN

L1 retrotransposons can pose a threat to genome integrity. The host has evolved to restrict L1 replication. However, mechanisms underlying L1 propagation out of the host surveillance remains unclear. Here, we propose an evolutionary survival strategy of L1, which exploits RNA m6A modification. We discover that m6A 'writer' METTL3 facilitates L1 retrotransposition, whereas m6A 'eraser' ALKBH5 suppresses it. The essential m6A cluster that is located on L1 5' UTR serves as a docking site for eukaryotic initiation factor 3 (eIF3), enhances translational efficiency and promotes the formation of L1 ribonucleoprotein. Furthermore, through the comparative analysis of human- and primate-specific L1 lineages, we find that the most functional m6A motif-containing L1s have been positively selected and became a distinctive feature of evolutionarily young L1s. Thus, our findings demonstrate that L1 retrotransposons hijack the RNA m6A modification system for their successful replication.


Asunto(s)
Adenosina/análogos & derivados , Evolución Molecular , Elementos de Nucleótido Esparcido Largo/genética , ARN/metabolismo , Regiones no Traducidas 5' , Adenosina/genética , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Animales , Células HeLa , Humanos , Metilación , Metiltransferasas/metabolismo , Primates/clasificación , Primates/genética , Biosíntesis de Proteínas , ARN/química , Ribonucleoproteínas/metabolismo
4.
Nucleic Acids Res ; 48(19): 11097-11112, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33035348

RESUMEN

The microprocessor complex cleaves the primary transcript of microRNA (pri-miRNA) to initiate miRNA maturation. Microprocessor is known to consist of RNase III DROSHA and dsRNA-binding DGCR8. Here, we identify Enhancer of Rudimentary Homolog (ERH) as a new component of Microprocessor. Through a crystal structure and biochemical experiments, we reveal that ERH uses its hydrophobic groove to bind to a conserved region in the N-terminus of DGCR8, in a 2:2 stoichiometry. Knock-down of ERH or deletion of the DGCR8 N-terminus results in a reduced processing of suboptimal pri-miRNAs in polycistronic miRNA clusters. ERH increases the processing of suboptimal pri-miR-451 in a manner dependent on its neighboring pri-miR-144. Thus, the ERH dimer may mediate 'cluster assistance' in which Microprocessor is loaded onto a poor substrate with help from a high-affinity substrate in the same cluster. Our study reveals a role of ERH in the miRNA biogenesis pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Células HCT116 , Células HEK293 , Humanos , Células K562 , MicroARNs/metabolismo , Unión Proteica , Conformación Proteica
5.
Mol Cell ; 78(2): 303-316.e4, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302542

RESUMEN

Nuclear processing of most miRNAs is mediated by Microprocessor, comprised of RNase III enzyme Drosha and its cofactor DGCR8. Here, we uncover a hidden layer of Microprocessor regulation via studies of Dicer-independent mir-451, which is clustered with canonical mir-144. Although mir-451 is fully dependent on Drosha/DGCR8, its short stem and small terminal loop render it an intrinsically weak Microprocessor substrate. Thus, it must reside within a cluster for normal biogenesis, although the identity and orientation of its neighbor are flexible. We use DGCR8 tethering assays and operon structure-function assays to demonstrate that local recruitment and transfer of Microprocessor enhances suboptimal substrate processing. This principle applies more broadly since genomic analysis indicates suboptimal canonical miRNAs are enriched in operons, and we validate several of these experimentally. Proximity-based enhancement of suboptimal hairpin processing provides a rationale for genomic retention of certain miRNA operons and may explain preferential evolutionary emergence of miRNA operons.


Asunto(s)
Genómica , MicroARNs/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Núcleo Celular/genética , Humanos , Procesamiento Postranscripcional del ARN/genética
6.
Mol Cell ; 73(3): 505-518.e5, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554947

RESUMEN

Microprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing ∼40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.


Asunto(s)
MicroARNs/metabolismo , Motivos de Nucleótidos , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Células HCT116 , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/química , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...