Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 188-191, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33017961

RESUMEN

Heart disease and stroke are the leading causes of death worldwide. High blood pressure greatly increases the risk of heart disease and stroke. Therefore, it is important to control blood pressure (BP) through regular BP monitoring; as such, it is necessary to develop a method to accurately and conveniently predict BP in a variety of settings. In this paper, we propose a method for predicting BP without feature extraction using fully convolutional neural networks (CNNs). We measured single multi-wave photoplethysmography (PPG) signals using a smartphone. To find an effective wavelength of PPG signals for the generation of accurate BP measurements, we investigated the BP prediction performance by changing the combinations of the input PPG signals. Our CNN-based BP predictor yielded the best performance metrics when a green PPG time signal was used in combination with an instantaneous frequency signal. This combination had an overall mean absolute error (MAE) of 5.28 and 4.92 mmHg for systolic and diastolic BP, respectively. Thus, our CNN-based approach achieved comparable results to other approaches that use a single PPG signal.


Asunto(s)
Teléfono Inteligente , Presión Sanguínea , Determinación de la Presión Sanguínea , Fotopletismografía , Análisis de la Onda del Pulso
2.
Small ; 9(18): 3103-10, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23401221

RESUMEN

Circulating tumor cells (CTCs), though exceedingly rare in the blood, are nonetheless becoming increasingly important in cancer diagnostics. Despite this keen interest and the growing number of potential clinical applications, there has been limited success in developing a CTC isolation platform that simultaneously optimizes recovery rates, purity, and cell compatibility. Herein, a novel tracheal carina-inspired bifurcated (TRAB) microfilter system is reported, which uses an optimal filter gap size satisfying both 100% theoretical recovery rate and purity, as determined by biomechanical analysis and fluid-structure interaction (FSI) simulations. Biomechanical properties are also used to clearly discriminate between cancer cells and leukocytes, whereby cancer cells are selectively bound to melamine microbeads, which increase the size and stiffness of these cells. Nanoindentation experiments are conducted to measure the stiffness of leukocytes as compared to the microbead-conjugated cancer cells, with these parameters then being used in FSI analyses to optimize the filter gap size. The simulation results show that given a flow rate of 100 µL min(-1), an 8 µm filter gap optimizes the recovery rate and purity. MCF-7 breast cancer cells with solid microbeads are spiked into 3 mL of whole blood and, by using this flow rate along with the optimized microfilter dimensions, the cell mixture passes through the TRAB filter, which achieves a recovery rate of 93% and purity of 59%. Regarding cell compatibility, it is verified that the isolation procedure does not adversely affect cell viability, thus also confirming that the re-collected cancer cells can be cultured for up to 8 days. This work demonstrates a CTC isolation technology platform that optimizes high recovery rates and cell purity while also providing a framework for functional cell studies, potentially enabling even more sensitive and specific cancer diagnostics.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microscopía de Fuerza Atómica/métodos , Células Neoplásicas Circulantes/metabolismo , Tráquea , Humanos , Microfluídica
3.
J Cell Sci ; 121(Pt 9): 1466-76, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18411251

RESUMEN

The Notch signaling pathway appears to perform an important function in inflammation. Here, we present evidence to suggest that lipopolysaccharide (LPS) suppresses Notch signaling via the direct modification of Notch by the nitration of tyrosine residues in macrophages. In the RAW264.7 macrophage cell line and in rat primary alveolar macrophages, LPS was found to inhibit Notch1 intracellular domain (Notch1-IC) transcription activity, which could then be rescued by treatment with N(G)-nitro-l-arginine, a nitric oxide synthase (NOS) inhibitor. Nitric oxide (NO), which was produced in cells that stably express endothelial NOS (eNOS) and brain NOS (bNOS), also induced the inhibition of Notch1 signaling. The NO-induced inhibition of Notch1 signaling remained unchanged after treatment with 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a guanylyl-cyclase inhibitor, and was not found to be mimicked by 8-bromo-cyclic GMP in the primary alveolar macrophages. With regards to the control of Notch signaling, NO appears to have a significant negative influence, via the nitration of Notch1-IC, on the binding that occurs between Notch1-IC and RBP-Jk, both in vitro and in vivo. By intrinsic fluorescence, we also determined that nitration could mediate conformational changes of Notch1-IC. The substitution of phenylalanine for tyrosine at residue 1905 in Notch1-IC abolished the nitration of Notch1-IC by LPS. Overall, our data suggest that an important relationship exists between LPS-mediated inflammation and the Notch1 signaling pathway, and that this relationship intimately involves the nitration of Notch1-IC tyrosine residues.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Lipopolisacáridos/farmacología , Óxido Nítrico/farmacología , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos , Animales , GMP Cíclico/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor Notch1/química , Fracciones Subcelulares/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
Cancer Lett ; 255(1): 117-26, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17513037

RESUMEN

The Notch signaling pathway appears to perform an important function in the determination of cell fate and in differentiation, in a wide variety of organisms and cell types. In this study, we provide evidence that the inactivation of Notch signaling by zinc is achieved via a PI3K-Akt-dependent, cytoplasmic retention of Notch1-IC and RBP-Jk. Extracellular zinc has been determined to inhibit constitutive active mutants of both Notch1 (DeltaEN1) and Notch1-IC-mediated transcription. However, in such cases, neither the cleavage pattern of Notch nor the protein stability of Notch1-IC and RBP-Jk was found to have significantly changed. With regard to the modulation of Notch signaling, zinc appears to exert a significant negative influence on the binding occurring between Notch1 and RBP-Jk, both in vivo and in vitro. The zinc-induced inhibition of Notch signaling can be rescued via pretreatment with wortmannin or LY294002, both of which are specific PI3K signaling pathway inhibitors. Furthermore, we ascertained that zinc triggers the cytoplasmic retention of Notch1-IC and RBP-Jk, and that cytoplasmic retention could be rescued via treatment with wortmannin. Overall, we have determined that an important relationship exists between zinc and the Notch1 signaling pathway, and that this relationship is intimately involved with the cytoplasmic retention of Notch and RBP-Jk.


Asunto(s)
Citoplasma/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Notch1/biosíntesis , Zinc/farmacología , Androstadienos/farmacología , Línea Celular , Cromonas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Morfolinas/farmacología , Transducción de Señal , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA