Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6569, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095374

RESUMEN

Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless organelles within cells, with implications in various biological processes and disease states. AT-rich interactive domain-containing protein 1A (ARID1A) is a chromatin remodeling factor frequently associated with cancer mutations, yet its functional mechanism remains largely unknown. Here, we find that ARID1A harbors a prion-like domain (PrLD), which facilitates the formation of liquid condensates through PrLD-mediated LLPS. The nuclear condensates formed by ARID1A LLPS are significantly elevated in Ewing's sarcoma patient specimen. Disruption of ARID1A LLPS results in diminished proliferative and invasive abilities in Ewing's sarcoma cells. Through genome-wide chromatin structure and transcription profiling, we identify that the ARID1A condensate localizes to EWS/FLI1 target enhancers and induces long-range chromatin architectural changes by forming functional chromatin remodeling hubs at oncogenic target genes. Collectively, our findings demonstrate that ARID1A promotes oncogenic potential through PrLD-mediated LLPS, offering a potential therapeutic approach for treating Ewing's sarcoma.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Proteína EWS de Unión a ARN , Sarcoma de Ewing , Factores de Transcripción , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Proteína EWS de Unión a ARN/metabolismo , Proteína EWS de Unión a ARN/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Cromatina/metabolismo , Carcinogénesis/genética , Animales , Ratones , Dominios Proteicos , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Separación de Fases
2.
Nat Commun ; 15(1): 230, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172108

RESUMEN

Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Neovascularización Fisiológica/genética , Angiogénesis , Dispositivos Laboratorio en un Chip , Análisis de Secuencia de ARN
3.
Genes Dev ; 37(21-24): 984-997, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37993255

RESUMEN

The RING-type E3 ligase has been known for over two decades, yet its diverse modes of action are still the subject of active research. Plant homeodomain (PHD) finger protein 7 (PHF7) is a RING-type E3 ubiquitin ligase responsible for histone ubiquitination. PHF7 comprises three zinc finger domains: an extended PHD (ePHD), a RING domain, and a PHD. While the function of the RING domain is largely understood, the roles of the other two domains in E3 ligase activity remain elusive. Here, we present the crystal structure of PHF7 in complex with the E2 ubiquitin-conjugating enzyme (E2). Our structure shows that E2 is effectively captured between the RING domain and the C-terminal PHD, facilitating E2 recruitment through direct contact. In addition, through in vitro binding and functional assays, we demonstrate that the N-terminal ePHD recognizes the nucleosome via DNA binding, whereas the C-terminal PHD is involved in histone H3 recognition. Our results provide a molecular basis for the E3 ligase activity of PHF7 and uncover the specific yet collaborative contributions of each domain to the PHF7 ubiquitination activity.


Asunto(s)
Histonas , Ubiquitina-Proteína Ligasas , Histonas/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dedos de Zinc , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194968, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572976

RESUMEN

Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.


Asunto(s)
Histonas , Lisina , Humanos , Histonas/metabolismo , Lisina/metabolismo , Histona Demetilasas/metabolismo , Procesamiento Proteico-Postraduccional , Metilación
5.
Curr Biol ; 33(17): 3759-3765.e3, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582374

RESUMEN

Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A.1 In cultured somatic cells, an established paradigm of cell-cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germ line challenges this model because of the cell-cycle arrest between pre-meiotic S phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocytes,2,3 suggesting that a similar process may be required for centromere inheritance in mammals. To test this hypothesis, we developed an oocyte-specific conditional knockout (cKO) mouse for Mis18α, an essential component of the assembly machinery. We find that embryos derived from Mis18α knockout oocytes fail to assemble CENP-A nucleosomes prior to zygotic genome activation (ZGA), validating the knockout model. We show that deletion of Mis18α in the female germ line at the time of birth has no impact on centromeric CENP-A nucleosome abundance, even after 6-8 months of aging. In addition, there is no detectable detriment to fertility. Thus, centromere chromatin is maintained long-term, independent of new assembly during the extended prophase I arrest in mouse oocytes.


Asunto(s)
Proteínas Cromosómicas no Histona , Nucleosomas , Femenino , Animales , Ratones , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/metabolismo , Centrómero/genética , Centrómero/metabolismo , Cromatina , Oocitos/metabolismo , Envejecimiento , Autoantígenos , Mamíferos/genética
6.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292821

RESUMEN

Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A 1 . In cultured somatic cells, an established paradigm of cell cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germline challenges this model because of the cell cycle arrest between pre-meiotic S-phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocyte 2,3 , suggesting that a similar process may be required for centromere inheritance in mammals. However, we show that centromere chromatin is maintained long-term independent of new assembly during the extended prophase I arrest in mouse oocytes. Conditional knockout of Mis18α, an essential component of the assembly machinery, in the female germline at the time of birth has almost no impact on centromeric CENP-A nucleosome abundance nor any detectable detriment to fertility.

8.
Cell Death Differ ; 30(6): 1430-1436, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997734

RESUMEN

Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy. In particular, when energy homeostasis is disrupted, for instance due to nutrient deprivation, cells increase autophagic activity at the transcriptional level, thereby also increasing the extent of overall autophagic flux. The transcription of genes associated with autophagy is strictly regulated by epigenetic factors through a network of histone-modifying enzymes along with histone modifications. A better understanding of the complex regulatory mechanisms of autophagy could reveal potential new therapeutic targets for autophagy-related diseases. In this review, we discuss the epigenetic regulation of autophagy in response to nutrient stress, focusing on histone-modifying enzymes and histone modifications.


Asunto(s)
Epigénesis Genética , Histonas , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Autofagia/genética , Nutrientes
9.
Nat Commun ; 14(1): 201, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639369

RESUMEN

Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Proteínas/metabolismo , Proteolisis , Aminoácidos/metabolismo , Estabilidad Proteica
10.
Nat Cancer ; 4(2): 290-307, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550235

RESUMEN

We report a proteogenomic analysis of pancreatic ductal adenocarcinoma (PDAC). Mutation-phosphorylation correlations identified signaling pathways associated with somatic mutations in significantly mutated genes. Messenger RNA-protein abundance correlations revealed potential prognostic biomarkers correlated with patient survival. Integrated clustering of mRNA, protein and phosphorylation data identified six PDAC subtypes. Cellular pathways represented by mRNA and protein signatures, defining the subtypes and compositions of cell types in the subtypes, characterized them as classical progenitor (TS1), squamous (TS2-4), immunogenic progenitor (IS1) and exocrine-like (IS2) subtypes. Compared with the mRNA data, protein and phosphorylation data further classified the squamous subtypes into activated stroma-enriched (TS2), invasive (TS3) and invasive-proliferative (TS4) squamous subtypes. Orthotopic mouse PDAC models revealed a higher number of pro-tumorigenic immune cells in TS4, inhibiting T cell proliferation. Our proteogenomic analysis provides significantly mutated genes/biomarkers, cellular pathways and cell types as potential therapeutic targets to improve stratification of patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Proteogenómica , Animales , Ratones , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Biomarcadores , Neoplasias Pancreáticas
11.
Nucleic Acids Res ; 50(14): 7856-7872, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821310

RESUMEN

Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis. Here, we applied integrated transcriptomic and epigenomic profiling to reveal the roles of plant homeodomain finger protein 20 (PHF20), which is an epigenetic reader possessing methyl binding activity, in controlling the expression of autophagy genes. Phf20 deficiency led to impaired autophagic flux and autophagy gene expression under glucose starvation. Interestingly, the genome-wide characterization of chromatin states by Assay for Transposase-Accessible Chromatin (ATAC)-sequencing revealed that the PHF20-dependent chromatin remodelling occurs in enhancers that are co-occupied by dimethylated lysine 36 on histone H3 (H3K36me2). Importantly, the recognition of H3K36me2 by PHF20 was found to be highly correlated with increased levels of H3K4me1/2 at the enhancer regions. Collectively, these results indicate that PHF20 regulates autophagy genes through enhancer activation via H3K36me2 recognition as an epigenetic reader. Our findings emphasize the importance of nuclear events in the regulation of autophagy.


Asunto(s)
Epigenómica , Inanición , Autofagia/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Proteínas de Homeodominio/genética , Humanos , Inanición/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Nucleic Acids Res ; 50(13): 7298-7309, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801910

RESUMEN

Autophagy, a catabolic process to remove unnecessary or dysfunctional organelles, is triggered by various signals including nutrient starvation. Depending on the types of the nutrient deficiency, diverse sensing mechanisms and signaling pathways orchestrate for transcriptional and epigenetic regulation of autophagy. However, our knowledge about nutrient type-specific transcriptional regulation during autophagy is limited. To understand nutrient type-dependent transcriptional mechanisms during autophagy, we performed single cell RNA sequencing (scRNAseq) in the mouse embryonic fibroblasts (MEFs) with or without glucose starvation (GS) as well as amino acid starvation (AAS). Trajectory analysis using scRNAseq identified sequential induction of potential transcriptional regulators for each condition. Gene regulatory rules inferred using TENET newly identified CCAAT/enhancer binding protein γ (C/EBPγ) as a regulator of autophagy in AAS, but not GS, condition, and knockdown experiment confirmed the TENET result. Cell biological and biochemical studies validated that activating transcription factor 4 (ATF4) is responsible for conferring specificity to C/EBPγ for the activation of autophagy genes under AAS, but not under GS condition. Together, our data identified C/EBPγ as a previously unidentified key regulator under AAS-induced autophagy.


Asunto(s)
Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Transcriptoma , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Autofagia/genética , Epigénesis Genética , Fibroblastos/metabolismo , Ratones , Análisis de la Célula Individual
14.
J Hematol Oncol ; 14(1): 148, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530889

RESUMEN

BACKGROUND: Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. METHODS: Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. RESULTS: KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. CONCLUSIONS: KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors.


Asunto(s)
Proteína Kangai-1/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Animales , Femenino , Proteína Kangai-1/genética , Masculino , Microdominios de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Exp Mol Med ; 53(9): 1278-1286, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34588606

RESUMEN

Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.


Asunto(s)
Regulación de la Expresión Génica , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Transducción de Señal , Animales , Ritmo Circadiano , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Homeostasis , Humanos , Metabolismo de los Lípidos , Organogénesis
17.
J Biomed Sci ; 28(1): 41, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34082769

RESUMEN

Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.


Asunto(s)
Histona Demetilasas/genética , Homeostasis/genética , Neoplasias/genética , Animales , Diferenciación Celular/genética , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas/inmunología , Histona Demetilasas/metabolismo , Homeostasis/inmunología , Humanos , Hipoxia/enzimología , Hipoxia/genética , Hipoxia/inmunología , Ratones , Neoplasias/enzimología , Neoplasias/inmunología , Células Madre Neoplásicas/fisiología , Escape del Tumor/genética
18.
Adv Exp Med Biol ; 1187: 103-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983575

RESUMEN

Aberrant epigenetic alteration has been associated with development of various cancers, including breast cancer. Since epigenetic modifications such as DNA methylation and histone modification are reversible, epigenetic enzymes, including histone modifying enzymes and DNA methyltransferases, emerge as attractive targets for cancer therapy. Although epi-drugs targeting histone deacetylation or DNA methylation have received FDA approval for cancer therapy, a very modest anti-tumor activity has been observed with monotherapy in clinical studies of breast cancer. To improve efficacy of epi-drugs in breast cancer, combination of epi-drugs with other therapies currently has been investigated. Additionally, basic researches to elucidate molecular causes of cancer should be extensively and intensively conducted in order to find novel epigenetic druggable targets. In this chapter, we summarize how epigenetic regulation affects the development of breast cancer and how to control cancer phenotype by modulating abnormal epigenetic modifications, and then suggest future research directions in epigenetics for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
19.
STAR Protoc ; 2(1): 100254, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490974

RESUMEN

Post-meiotic spermatids become spermatozoa through developmental stages during spermiogenesis. Isolation of spermatid fractions is required to examine the change of protein expression during spermiogenesis. Here, we present a simple method to isolate spermatid fractions from mouse testes using unit gravity sedimentation in a BSA density gradient. Isolation of spermatid fractions can be used to analyze changes of transcript or protein during spermiogenesis. For complete details on the use and execution of this protocol, please refer to Kim et al. (2020).


Asunto(s)
Separación Celular , Espermátides/citología , Testículo/citología , Animales , Masculino , Ratones , Espermátides/metabolismo , Espermatogénesis , Testículo/metabolismo
20.
Nat Commun ; 11(1): 6297, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293536

RESUMEN

Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Autofagia/genética , ADN Helicasas/metabolismo , Epigénesis Genética , Proteína-Arginina N-Metiltransferasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Acetilación , Animales , Arginina/metabolismo , ADN Helicasas/genética , Fibroblastos , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Histonas/metabolismo , Humanos , Lisina Acetiltransferasa 5/metabolismo , Metilación , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal/genética , Transactivadores/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA