Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38428420

RESUMEN

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Animales , Humanos , Proteínas de la Membrana/metabolismo , Aparato de Golgi/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Vertebrados
2.
Nature ; 620(7976): 1109-1116, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612506

RESUMEN

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.


Asunto(s)
Microscopía por Crioelectrón , GTP Fosfohidrolasas , Mitocondrias , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Fusión de Membrana , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Mutación , Nucleótidos/metabolismo , Unión Proteica/genética , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Humanos
3.
Blood ; 141(3): 231-237, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36322931

RESUMEN

Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Animales , Humanos , Macaca mulatta , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patología , Trombopoyesis , Fenotipo
4.
PLoS Biol ; 20(9): e3001599, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36170207

RESUMEN

Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.


Asunto(s)
Citocinesis , Esfingomielinas , Actomiosina/metabolismo , Animales , Citocinesis/genética , Drosophila/genética , Endosomas/metabolismo , Masculino , Meiosis , Fosfatos de Fosfatidilinositol/metabolismo
5.
Front Cell Dev Biol ; 10: 933376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003147

RESUMEN

Volume electron microscopy, a powerful approach to generate large three-dimensional cell and tissue volumes at electron microscopy resolutions, is rapidly becoming a routine tool for understanding fundamental and applied biological questions. One of the enabling factors for its adoption has been the development of conventional fixation protocols with improved heavy metal staining. However, freeze-substitution with organic solvent-based fixation and staining has not realized the same level of benefit. Here, we report a straightforward approach including osmium tetroxide, acetone and up to 3% water substitution fluid (compatible with traditional or fast freeze-substitution protocols), warm-up and transition from organic solvent to aqueous 2% osmium tetroxide. Once fully hydrated, samples were processed in aqueous based potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide, uranyl acetate and lead acetate before resin infiltration and polymerization. We observed a consistent and substantial increase in heavy metal staining across diverse and difficult-to-fix test organisms and tissue types, including plant tissues (Hordeum vulgare), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae). Our approach opens new possibilities to combine the benefits of cryo-preservation with enhanced contrast for volume electron microscopy in diverse organisms.

6.
Viruses ; 13(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918371

RESUMEN

The visualization of cellular ultrastructure over a wide range of volumes is becoming possible by increasingly powerful techniques grouped under the rubric "volume electron microscopy" or volume EM (vEM). Focused ion beam scanning electron microscopy (FIB-SEM) occupies a "Goldilocks zone" in vEM: iterative and automated cycles of milling and imaging allow the interrogation of microns-thick specimens in 3-D at resolutions of tens of nanometers or less. This bestows on FIB-SEM the unique ability to aid the accurate and precise study of architectures of virus-cell interactions. Here we give the virologist or cell biologist a primer on FIB-SEM imaging in the context of vEM and discuss practical aspects of a room temperature FIB-SEM experiment. In an in vitro study of SARS-CoV-2 infection, we show that accurate quantitation of viral densities and surface curvatures enabled by FIB-SEM imaging reveals SARS-CoV-2 viruses preferentially located at areas of plasma membrane that have positive mean curvatures.


Asunto(s)
COVID-19/patología , Interacciones Microbiota-Huesped , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , SARS-CoV-2 , Animales , Comunicación Celular , Membrana Celular , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Pulmón , Células Vero
7.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33734293

RESUMEN

Cytonemes are specialized filopodia that mediate paracrine signaling in Drosophila and other animals. Studies using fluorescence confocal microscopy (CM) established their general paths, cell targets, and essential roles in signaling. To investigate details unresolvable by CM, we used high-pressure freezing and EM to visualize cytoneme structures, paths, contents, and contacts. We observed cytonemes previously seen by CM in the Drosophila wing imaginal disc system, including disc, tracheal air sac primordium (ASP), and myoblast cytonemes, and identified cytonemes extending into invaginations of target cells, and cytonemes connecting ASP cells and connecting myoblasts. Diameters of cytoneme shafts vary between repeating wide (206 ± 51.8 nm) and thin (55.9 ± 16.2 nm) segments. Actin, ribosomes, and membranous compartments are present throughout; rough ER and mitochondria are in wider proximal sections. These results reveal novel structural features of filopodia and provide a basis for understanding cytoneme cell biology and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Mioblastos/metabolismo , Seudópodos/metabolismo , Transducción de Señal/fisiología , Alas de Animales/metabolismo
8.
Methods Mol Biol ; 2346: 79-90, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460026

RESUMEN

The Drosophila ovary is an exceptional model for studying cell-cell interactions in vivo. Cells communicate with each other in a highly coordinated manner. Accurate spatiotemporal regulation of cell-cell interaction is critical for the development of eggs. Ultrastructural analysis using electron microscopy (EM) permits the visualization of both cells and subcellular signaling structures with high resolution. Here we describe a method for the processing of intact fly ovaries by scanning electron microscopy (SEM).


Asunto(s)
Ovario/ultraestructura , Animales , Comunicación Celular , Drosophila , Femenino , Ovario/citología
9.
Endocrinology ; 161(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384146

RESUMEN

Meiotic arrest and resumption in mammalian oocytes are regulated by 2 opposing signaling proteins in the cells of the surrounding follicle: the guanylyl cyclase natriuretic peptide receptor 2 (NPR2), and the luteinizing hormone receptor (LHR). NPR2 maintains a meiosis-inhibitory level of cyclic guanosine 5'-monophosphate (cGMP) until LHR signaling causes dephosphorylation of NPR2, reducing NPR2 activity, lowering cGMP to a level that releases meiotic arrest. However, the signaling pathway between LHR activation and NPR2 dephosphorylation remains incompletely understood, due in part to imprecise information about the cellular localization of these 2 proteins. To investigate their localization, we generated mouse lines in which hemagglutinin epitope tags were added to the endogenous LHR and NPR2 proteins, and used immunofluorescence and immunogold microscopy to localize these proteins with high resolution. The results showed that the LHR protein is absent from the cumulus cells and inner mural granulosa cells, and is present in only 13% to 48% of the outer mural granulosa cells. In contrast, NPR2 is present throughout the follicle, and is more concentrated in the cumulus cells. Less than 20% of the NPR2 is in the same cells that express the LHR. These results suggest that to account for the LH-induced inactivation of NPR2, LHR-expressing cells send a signal that inactivates NPR2 in neighboring cells that do not express the LHR. An inhibitor of gap junction permeability attenuates the LH-induced cGMP decrease in the outer mural granulosa cells, consistent with this mechanism contributing to how NPR2 is inactivated in cells that do not express the LHR.


Asunto(s)
GMP Cíclico/metabolismo , Folículo Ovárico/enzimología , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de HL/metabolismo , Animales , Femenino , Ratones , Microscopía Electrónica de Rastreo , Folículo Ovárico/ultraestructura
10.
Methods Cell Biol ; 152: 41-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31326026

RESUMEN

The Automated Tape-Collecting Ultramicrotome (ATUM) is a tape-reeling device that is placed in a water-filled diamond knife boat to collect serial sections as they are cut by a conventional ultramicrotome. The ATUM can collect thousands of sections of many different shapes and sizes, which are subsequently imaged by a scanning electron microscope. This method has been used for large-scale connectomics projects of mouse brain, and is well suited for other smaller-scale studies of tissues, cells, and organisms. Here, we describe basic procedures for preparing a block for ATUM sectioning, handling of the ATUM, tape preparation, post-treatment of sections, and considerations for mapping, imaging, and aligning the serial sections.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microtomía/métodos , Animales , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Ratones
11.
Sci Rep ; 9(1): 1262, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718581

RESUMEN

Each mammalian oocyte is nurtured by its own multi-cellular structure, the ovarian follicle. We used new methods for serial section electron microscopy to examine entire cumulus and mural granulosa cells and their projections in mouse antral ovarian follicles. Transzonal projections (TZPs) are thin cytoplasmic projections that connect cumulus cells to the oocyte and are crucial for normal oocyte development. We studied these projections in detail and found that most TZPs do not reach the oocyte, and that they often branch and make gap junctions with each other. Furthermore, the TZPs that connect to the oocyte are usually contacted on their shaft by oocyte microvilli. Mural granulosa cells were found to possess randomly oriented cytoplasmic projections that are strikingly similar to the free-ended TZPs. We propose that granulosa cells use cytoplasmic projections to search for the oocyte, and cumulus cell differentiation results from a contact-mediated paracrine interaction with the oocyte.


Asunto(s)
Extensiones de la Superficie Celular/ultraestructura , Citoplasma/ultraestructura , Ratones , Folículo Ovárico/ultraestructura , Animales , Comunicación Celular , Células del Cúmulo/citología , Células del Cúmulo/ultraestructura , Femenino , Uniones Comunicantes/ultraestructura , Células de la Granulosa/citología , Células de la Granulosa/ultraestructura , Ratones/anatomía & histología , Ratones Endogámicos C57BL , Microscopía Electrónica , Microvellosidades/ultraestructura , Oocitos/citología , Folículo Ovárico/citología , Seudópodos/ultraestructura
12.
Development ; 145(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29980567

RESUMEN

Throughout the male reproductive lifespan, spermatogonial stem cells (SSCs) produce committed progenitors that proliferate and then remain physically connected in growing clones via short cylindrical intercellular bridges (ICBs). These ICBs, which enlarge in meiotic spermatocytes, have been demonstrated to provide a conduit for postmeiotic haploid spermatids to share sex chromosome-derived gene products. In addition to ICBs, spermatogonia exhibit multiple thin cytoplasmic projections. Here, we have explored the nature of these projections in mice and find that they are dynamic, span considerable distances from their cell body (≥25 µm), either terminate or physically connect multiple adjacent spermatogonia, and allow for sharing of macromolecules. Our results extend the current model that subsets of spermatogonia exist as isolated cells or clones, and support a model in which spermatogonia of similar developmental fates are functionally connected through a shared dynamic cytoplasm mediated by thin cytoplasmic projections.


Asunto(s)
Citoplasma/metabolismo , Mamíferos/metabolismo , Espermatogonias/metabolismo , Animales , Diferenciación Celular , Citoplasma/ultraestructura , Difusión , Proteínas Fluorescentes Verdes/metabolismo , Espacio Intracelular/metabolismo , Sustancias Macromoleculares/metabolismo , Masculino , Meiosis , Ratones Transgénicos , Papio , Ratas , Espermatocitos/citología , Espermatocitos/metabolismo , Espermatogonias/citología , Espermatogonias/ultraestructura
13.
Elife ; 62017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199951

RESUMEN

Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth.


Asunto(s)
Desarrollo Óseo , Factores de Crecimiento de Fibroblastos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores del Factor Natriurético Atrial/metabolismo , Animales , GMP Cíclico/metabolismo , Ratones , Fosforilación , Transducción de Señal
14.
Elife ; 62017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28742022

RESUMEN

Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/genética , Paraplejía Espástica Hereditaria/genética , Animales , Transporte Axonal , Axones/ultraestructura , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/clasificación , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Retículo Endoplásmico/ultraestructura , Expresión Génica , Humanos , Larva/citología , Larva/genética , Larva/metabolismo , Larva/ultraestructura , Proteínas de Transporte de Membrana/deficiencia , Mutación , Filogenia , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología
15.
Sci Rep ; 7(1): 1652, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490731

RESUMEN

Once referred to as "peculiar," tuft cells are enigmatic epithelial cells. Here, we reasoned that future functional studies could be derived from a complete account of the tuft cell ultrastructure. We identified and documented the volumetric ultrastructure at nanometer resolution (4-5 nm/pixel) of specific intestinal tuft cells. The techniques used were Serial Block-Face (SBF) and Automated Tape-collecting Ultra-Microtome (ATUM) Scanning Electron Microscopy (SEM). Our results exposed a short (~15 µm) basal cytoplasmic process devoid of secretory vesicles. Volume rendering of serial sections unveiled several thin cytospinules (~1 µm). These cytospinules project from the tuft cell into the nuclei of neighboring epithelial cells. Volume rendering also revealed within the tuft cell an elegant network of interconnected tubules. The network forms a passage from the base of the microvilli to the rough endoplasmic reticulum. Based on their location and microanatomy, the tuft cells' cytospinules, and tubular network, might facilitate the exchange of molecular cargo with nuclei of neighboring cells, and the gut lumen.


Asunto(s)
Intestinos/citología , Nanoestructuras/química , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Ratones Transgénicos , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Nanoestructuras/ultraestructura
16.
J Cell Sci ; 130(7): 1333-1340, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202692

RESUMEN

Gap junction turnover occurs through the internalization of both of the plasma membranes of a gap junction plaque, forming a double membrane-enclosed vesicle, or connexosome. Phosphorylation has a key role in regulation, but further progress requires the ability to clearly distinguish gap junctions and connexosomes, and to precisely identify proteins associated with them. We examined, by using electron microscopy, serial sections of mouse preovulatory ovarian follicles that had been collected with an automated tape collecting ultramicrotome (ATUM). We found that connexosomes can form from adjacent cell bodies, from thin cell processes or from the same cell. By immunolabeling serial sections, we found that residue S368 of connexin 43 (also known as GJA1) is phosphorylated on gap junctions and connexosomes, whereas connexin 43 residue S262 is phosphorylated only on some connexosomes. These data suggest that phosphorylation at S262 contributes to connexosome formation or processing, and they provide more precise evidence that phosphorylation has a key role in gap junction internalization. Serial section electron microscopy of immunogold-labeled tissues offers a new way to investigate the three-dimensional organization of cells in their native environment.


Asunto(s)
Conexina 43/metabolismo , Microscopía Electrónica/métodos , Animales , Femenino , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Caballos , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Coloración y Etiquetado
17.
J Neuroinflammation ; 13(1): 292, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852330

RESUMEN

BACKGROUND: The mechanism of leukocyte transendothelial migration (TEM) across the highly restrictive blood-brain barrier (BBB) remains enigmatic, with paracellular TEM thought to require leukocytes to somehow navigate the obstructive endothelial tight junctions (TJs). Transient interactions between TJ proteins on the respective leukocyte and endothelial surfaces have been proposed as one mechanism for TEM. Given the expanding role of extracellular vesicles (EVs) in intercellular communication, we investigated whether EVs derived from brain microvascular endothelial cells (BMEC) of the BBB may play a role in transferring a major TJ protein, claudin-5 (CLN-5), to leukocytes as a possible basis for such a mechanism during neuroinflammation. METHODS: High-resolution 3D confocal imaging was used to highlight CLN-5 immunoreactivity in the central nervous system (CNS) and on leukocytes of mice with the neuroinflammatory condition experimental autoimmune encephalomyelitis (EAE). Both Western blotting of circulating leukocytes from wild-type mice and fluorescence imaging of leukocyte-associated eGFP-CLN-5 in the blood and CNS of endothelial-targeted, Tie-2-eGFP-CLN-5 transgenic mice were used to confirm the presence of CLN-5 protein on these cells. EVs were isolated from TNF-α-stimulated BMEC cultures and blood plasma of Tie-2-eGFP-CLN-5 mice with EAE and evaluated for CLN-5 protein by Western blotting and fluorescence-activated cell sorting (FACS), respectively. Confocal imaging and FACS were used to detect binding of endothelial-derived EVs from these two sources to leukocytes in vitro. Serial electron microscopy (serial EM) and 3D contour-based surface reconstruction were employed to view EV-like structures at the leukocyte:BBB interface in situ in inflamed CNS microvessels. RESULTS: A subpopulation of leukocytes immunoreactive for CLN-5 on their surface was seen to infiltrate the CNS of mice with EAE and reside in close apposition to inflamed vessels. Confocal imaging of immunostained samples and Western blotting established the presence of CLN-5+ leukocytes in blood as well, implying these cells are present prior to TEM. Moreover, imaging of inflamed CNS vessels and the associated perivascular cell infiltrates from Tie-2-eGFP-CLN-5 mice with EAE revealed leukocytes bearing the eGFP label, further supporting the hypothesis CLN-5 is transferred from endothelial cells to circulating leukocytes in vivo. Western blotting of BMEC-derived EVs, corresponding in size to both exosomes and microvesicles, and FACS analysis of plasma-derived EVs from Tie-2-eGFP-CLN-5 mice with EAE validated expression of CLN-5 by EVs of endothelial origin. Confocal imaging and FACS further revealed both PKH-67-labeled EVs from cultured BMECs and eGFP-CLN-5+ EVs from plasma of Tie-2-eGFP-CLN-5 mice with EAE can bind to leukocytes. Lastly, serial EM and 3D contour-based surface reconstruction revealed a close association of EV-like structures between the marginating leukocytes and BMECs in situ during EAE. CONCLUSIONS: During neuroinflammation, CLN-5+ leukocytes appear in the CNS, and both CLN-5+ leukocytes and CLN-5+ EVs are detected in the blood. As endothelial cells transfer CLN-5+ to leukocytes in vivo, and EVs released from BMEC bind to leukocytes in vitro, EVs may serve as the vehicles to transfer CLN-5 protein at sites of leukocyte:endothelial contact along the BBB. This action may be a prelude to facilitate TEM through the formation of temporary TJ protein bridges between these two cell types.


Asunto(s)
Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/diagnóstico por imagen , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Células Endoteliales/ultraestructura , Endotelio Vascular/ultraestructura , Vesículas Extracelulares/ultraestructura , Femenino , Leucocitos/metabolismo , Proteínas de Membrana de los Lisosomas , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad
18.
Development ; 141(18): 3594-604, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25183874

RESUMEN

In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte.


Asunto(s)
GMP Cíclico/metabolismo , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Meiosis/fisiología , Oocitos/fisiología , Receptores del Factor Natriurético Atrial/metabolismo , Análisis de Varianza , Animales , Western Blotting , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunoprecipitación , Péptido Natriurético Tipo-C/metabolismo , Folículo Ovárico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Ratas , Receptores del Factor Natriurético Atrial/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...