Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
Blood ; 143(12): 1139-1156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064663

RESUMEN

ABSTRACT: The World Health Organization (WHO) classification of hematolymphoid tumors and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of chronic myelomonocytic leukemia (CMML). To assess its qualitative and quantitative implications for patient care, we started with 3311 established CMML cases (according to WHO 2017 criteria) and included 2130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both 2022 classification systems, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as myelodysplastic syndrome (MDS) according to the WHO 2017 classification. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, because of different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD and myeloproliferative CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Consenso , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/patología , Leucocitosis , Organización Mundial de la Salud , Pronóstico , Compuestos Orgánicos
3.
Blood ; 143(11): 1006-1017, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142424

RESUMEN

ABSTRACT: Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.


Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Humanos , Animales , Ratones , Factor de Necrosis Tumoral alfa , Survivin/genética , Pronóstico , Mastocitosis Sistémica/diagnóstico , Mastocitosis Sistémica/genética , Citocinas
4.
Blood Adv ; 7(23): 7346-7357, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874914

RESUMEN

Deleterious germ line variants in DDX41 are a common cause of genetic predisposition to hematologic malignancies, particularly myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). Targeted next-generation sequencing was performed in a large cohort of sequentially recruited patients with myeloid malignancy, covering DDX41 as well as 30 other genes frequently mutated in myeloid malignancy. Whole genome transcriptome sequencing data was analyzed on a separate cohort of patients with a range of hematologic malignancies to investigate the spectrum of cancer predisposition. Altogether, 5737 patients with myeloid malignancies were studied, with 152 different DDX41 variants detected. Multiple novel variants were detected, including synonymous variants affecting splicing as demonstrated by RNA-sequencing. The presence of a somatic DDX41 variant was highly associated with DDX41 germ line variants in patients with MDS and AML, and we developed a statistical approach to incorporate the co-occurrence of a somatic DDX41 variant into germ line variant classification at a very strong level (as per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines). Using this approach, the MDS cohort contained 108 of 2865 (3.8%) patients with germ line likely pathogenic/pathogenic (LP/P) variants, and the AML cohort 106 of 2157 (4.9%). DDX41 LP/P variants were markedly enriched in patients with AML and MDS compared with those in patients with myeloproliferative neoplasms, B-cell neoplasm, and T- or B-cell acute lymphoblastic leukemia. In summary, we have developed a framework to enhance DDX41 variant curation as well as highlighted the importance of assessment of all types of genomic variants (including synonymous and multiexon deletions) to fully detect the landscape of possible clinically relevant DDX41 variants.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , ARN Helicasas DEAD-box/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Genómica
6.
Blood Adv ; 7(18): 5540-5548, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37505914

RESUMEN

Several clinical and genetic factors impact overall survival (OS) in myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML), including complex karyotype (CK), TP53 allelic state, and blast count. We analyzed the interplay of these factors by performing Cox regression analysis and by determining the frequency of TP53 single-hit (sh) and double-hit (dh) events and OS in MDS (n = 747) with <5% blasts, with ≥5% but <10% blasts, and ≥10% but <20% blasts and AML (n = 772). MDS with <5% blasts showed the best outcome, followed by with ≥5% but <10% blasts, and ≥10% but <20% blasts, and AML (median OS: 75, 54, 27, and 18 months, respectively). The same hierarchy was observed when each subgroup was divided into TP53sh, TP53dh, and without TP53 alterations (alt), revealing a dismal outcome of TP53dh in all subgroups (17, 10, 8, and 1 month[s], respectively). MDS with <5% blasts differed from the other subgroups by showing predominantly TP53sh (76% of TP53alt cases), and by an independent adverse impact of CK on OS (hazard ratio, 5.2; P < .001). The remaining subgroups displayed many similarities, with TP53dh found at high frequencies (67%, 91%, and 71%, respectively) and only TP53alt but not CK independently influencing OS, and TP53dh showing the strongest influence. When the total cohort was split based on TP53 state, only the blast count and not CK had an independent adverse impact on OS in all subgroups. Thus, TP53dh is the strongest prognostic factor, further supporting its integration into risk stratification guidelines and classification as a separate entity. However, the blast count also influences OS independent of TP53 state, whereas CK plays a minor prognostic role.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Leucemia Mieloide Aguda/genética , Cariotipo Anormal , Síndromes Mielodisplásicos/genética , Pronóstico , Recuento de Células Sanguíneas , Proteína p53 Supresora de Tumor/genética
7.
Leukemia ; 37(7): 1413-1420, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120689

RESUMEN

In parallel to the 5th edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO 2022), an alternative International Consensus Classification (ICC) has been proposed. To evaluate the impact of the new classifications on AML diagnoses and ELN-based risk classification, we analyzed 717 MDS and 734 AML non-therapy-related patients diagnosed according to the revised 4th WHO edition (WHO 2017) by whole genome and transcriptome sequencing. In both new classifications, the purely morphologically defined AML entities decreased from 13% to 5%. Myelodysplasia-related (MR) AML increased from 22% to 28% (WHO 2022) and 26% (ICC). Other genetically-defined AML remained the largest group, and the abandoned AML-RUNX1 was mainly reclassified as AML-MR (WHO 2022: 77%; ICC: 96%). Different inclusion criteria of AML-CEBPA and AML-MR (i.a. exclusion of TP53 mutated cases according to ICC) were associated with differences in overall survival. In conclusion, both classifications focus on more genetics-based definitions with similar basic concepts and a large degree of agreement. The remaining non-comparability (e.g., TP53 mutated AML) needs additional studies to definitely answer open questions on disease categorization in an unbiased way.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Leucemia Mieloide Aguda/patología , Nucleofosmina , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/diagnóstico , Organización Mundial de la Salud , Lenguaje , Mutación
13.
Cytometry B Clin Cytom ; 104(2): 173-182, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35088567

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases classified by comprehensive diagnostics. Identification of homogeneous subgroups is desirable to understand differences in clinical course and to develop targeted treatment approaches. We identified a specific CD11b/CD16 expression pattern in granulocytes associated with reduced CD45 expression in myeloid progenitor cells (MPC) in MDS cases and assessed its genetic background by whole genome (WGS) and whole transcriptome sequencing (WTS). METHODS: The cohort consisted of 32 MDS cases with the specific aberrant immunophenotype. Since all these 32 cases were found to be SRSF2 mutated additional 51 SRSF2 mutated MDS cases without this specific immunophenotype were selected as controls. For all cases WGS and WTS were performed. RESULTS: The immunophenotype newly identified in SRSF2 mutated MDS patients is characterized (1) by a specific maturation pattern, i.e. an increase of CD11b expression without CD16 expression followed by an increase in CD16 expression without further CD11b expression and (2) by only dim CD45 expression of MPC. STAG2 mutations were exclusively found in MDS cases with the specific immunophenotype (17/32, 53% vs. 0%, p < 0.001). Hence, >50% of cases with the specific immunophenotype were characterized by co-mutations in SRSF2 and STAG2. In addition, cluster analysis revealed a specific gene expression profile of such cases. CONCLUSION: We here for the first time describe a specific immunophenotype which defines MDS cases with SRSF2 mutations and a consistent and specific mutational and gene expression profile. This comprehensive data warrants analysis of further such cases to assess the feasibility of defining a new sub-entity of MDS.


Asunto(s)
Síndromes Mielodisplásicos , Transcriptoma , Humanos , Citometría de Flujo , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Mutación/genética , Granulocitos/metabolismo
14.
Leukemia ; 36(12): 2894-2902, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36261576

RESUMEN

Recently, MDS with mutated SF3B1 and blast count <5% was proposed as distinct entity with favorable prognosis by the international working group for the prognosis of MDS (IWG-PM), the 5th edition of the WHO classification and the International Consensus Classification. To further characterize this entity with respect to the genomic landscape, AML transformation rate and clinical outcome, we analyzed 734 MDS patients by whole genome sequencing. SF3B1 mutations were identified in 31% (n = 231), most frequently accompanied by TET2 mutations (29%). 144/231 (62%) SF3B1mut samples fulfilled entity criteria proposed by IWG-PM (SF3B1ent). These cases were associated with longer survival, lower AML transformation rate, normal karyotypes and harbored less accompanying mutations compared to SF3B1mut samples not falling into the proposed SF3B1 entity (SF3B1nent). Of SF3B1mut cases 7% (15/231; SF3B1ent: 3/144 [2%]; SF3B1nent: 12/87 [14%]) progressed to AML compared to 15% SF3B1 wild-type patients (75/503). Of these 15 SF3B1mut cases, 10 (67%) showed RUNX1 mutations at MDS or AML stage. Multivariate analysis revealed that del(5q) and RUNX1 mutations were independent negative prognostic factors for overall survival, while blast count >5% was not. In conclusion, SF3B1mut MDS has a favorable prognosis independent of blast count if karyotype and RUNX1 mutations are considered.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Pronóstico , Mutación , Leucemia Mieloide Aguda/genética , Factores de Empalme de ARN/genética , Fosfoproteínas/genética
17.
Nat Genet ; 54(5): 637-648, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513723

RESUMEN

Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired ß-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.


Asunto(s)
Quimiocina CCL22 , Células Asesinas Naturales , Trastornos Linfoproliferativos , Animales , Quimiocina CCL22/genética , Células Asesinas Naturales/patología , Activación de Linfocitos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/patología , Ratones , Mutación
18.
Leukemia ; 36(2): 394-402, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34376804

RESUMEN

In AML patients, recurrent mutations were shown to persist in remission, however, only some have a prognostic value and persistent mutations might therefore reflect a re-established premalignant state or truly active disease causing relapse. We aimed to dissect the nature of co-mutations in NPM1 mutated AML where the detection of NPM1 transcripts allows highly specific and sensitive detection of complete molecular remission (CMR). We analysed 150 consecutive patients who achieved CMR following intensive treatment by next generation sequencing on paired samples at diagnosis, CMR and relapse (38/150 patients). Patients with persistence or the acquisition of non-DTA (DNMT3A, TET2, ASXL1) mutations at CMR (23/150 patients, 15%) have a significantly worse prognosis (EFS HR = 2.7, p = 0.003; OS HR = 3.6, p = 0.012). Based on clonal evolution analysis of diagnostic, CMR and relapse samples, we redefine pre-malignant mutations and include IDH1, IDH2 and SRSF2 with the DTA genes in this newly defined group. Only the persistence or acquisition of CHOP-like (clonal hematopoiesis of oncogenic potential) mutations was significantly associated with an inferior outcome (EFS HR = 4.5, p = 0.0002; OS HR = 5.5, p = 0.002). Moreover, the detection of CHOP-like mutations at relapse was detrimental (HR = 4.5, p = 0.01). We confirmed these findings in a second independent whole genome sequencing cohort.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Mieloide Aguda/patología , Mutación , Recurrencia Local de Neoplasia/patología , Nucleofosmina/genética , Factor de Transcripción CHOP/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Evolución Clonal , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...