Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Brain Behav Immun ; 119: 333-350, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38561095

RESUMEN

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.

2.
Mol Metab ; 82: 101914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479548

RESUMEN

OBJECTIVE: The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS: To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS: High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS: These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Embarazo , Ratones , Femenino , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo
3.
iScience ; 27(3): 109083, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361627

RESUMEN

Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial ß-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.

4.
iScience ; 27(2): 108927, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327776

RESUMEN

Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.

5.
J Biol Chem ; 299(8): 104917, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315788

RESUMEN

Although aging is associated with progressive adiposity and a decline in liver function, the underlying molecular mechanisms and metabolic interplay are incompletely understood. Here, we demonstrate that aging induces hepatic protein kinase Cbeta (PKCß) expression, while hepatocyte PKCß deficiency (PKCßHep-/-) in mice significantly attenuates obesity in aged mice fed a high-fat diet. Compared with control PKCßfl/fl mice, PKCßHep-/- mice showed elevated energy expenditure with augmentation of oxygen consumption and carbon dioxide production which was dependent on ß3-adrenergic receptor signaling, thereby favoring negative energy balance. This effect was accompanied by induction of thermogenic genes in brown adipose tissue (BAT) and increased BAT respiratory capacity, as well as a shift to oxidative muscle fiber type with an improved mitochondrial function, thereby enhancing oxidative capacity of thermogenic tissues. Furthermore, in PKCßHep-/- mice, we determined that PKCß overexpression in the liver mitigated elevated expression of thermogenic genes in BAT. In conclusion, our study thus establishes hepatocyte PKCß induction as a critical component of pathophysiological energy metabolism by promoting progressive hepatic and extrahepatic metabolic derangements in energy homeostasis, contributing to late-onset obesity. These findings have potential implications for augmenting thermogenesis as a means of combating aging-induced obesity.


Asunto(s)
Hígado , Obesidad , Proteína Quinasa C beta , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Oxidación-Reducción , Proteína Quinasa C beta/deficiencia , Proteína Quinasa C beta/genética , Proteína Quinasa C beta/metabolismo , Regulación Enzimológica de la Expresión Génica , Envejecimiento , Transducción de Señal
6.
Life Sci ; 311(Pt B): 121181, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372212

RESUMEN

AIMS: Aerobic exercise is an important component of rehabilitation after cardiovascular injuries including myocardial infarction (MI). In human studies, the beneficial effects of exercise after an MI are blunted in patients who are obese or glucose intolerant. Here, we investigated the effects of exercise on MI-induced cardiac dysfunction and remodeling in mice chronically fed a high-fat diet (HFD). MAIN METHODS: C57Bl/6 male mice were fed either a standard (Chow; 21% kcal/fat) or HFD (60% kcal/fat) for 36 weeks. After 24 weeks of diet, the HFD mice were randomly subjected to an MI (MI) or a sham surgery (Sham). Following the MI or sham surgery, a subset of mice were subjected to treadmill exercise. KEY FINDINGS: HFD resulted in obesity and glucose intolerance, and this was not altered by exercise or MI. MI resulted in decreased ejection fraction, increased left ventricle mass, increased end systolic and diastolic diameters, increased cardiac fibrosis, and increased expression of genes involved in cardiac hypertrophy and heart failure in the MI-Sed and MI-Exe mice. Exercise prevented HFD-induced cardiac fibrosis in Sham mice (Sham-Exe) but not in MI-Exe mice. Exercise did, however, reduce post-MI mortality. SIGNIFICANCE: These data indicate that exercise significantly increased survival after MI in a model of diet-induced obesity independent of effects on cardiac function. These data have important translational ramifications because they demonstrate that environmental interventions, including diet, need to be carefully evaluated and taken into consideration to support the effects of exercise in the cardiac rehabilitation of patients who are obese.


Asunto(s)
Infarto del Miocardio , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Obesidad , Remodelación Ventricular
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142759

RESUMEN

Obesity is increasing at epidemic rates across the US and worldwide, as are its co-morbidities, including type-2 diabetes and cardiovascular disease. Thus, targeted interventions to reduce the prevalence of obesity are of the utmost importance. The sigma-1 receptor (S1R) and sigma-2 receptor (S2R; encoded by Tmem97) belong to the same class of drug-binding sites, yet they are genetically distinct. There are multiple ongoing clinical trials focused on sigma receptors, targeting diseases ranging from Alzheimer's disease through chronic pain to COVID-19. However, little is known regarding their gene-specific role in obesity. In this study, we measured body composition, used a comprehensive laboratory-animal monitoring system, and determined the glucose and insulin tolerance in mice fed a high-fat diet. Compared to Sigmar1+/+ mice of the same sex, the male and female Sigmar1-/- mice had lower fat mass (17% and 12% lower, respectively), and elevated lean mass (16% and 10% higher, respectively), but S1R ablation had no effect on their metabolism. The male Tmem97-/- mice exhibited 7% lower fat mass, 8% higher lean mass, increased volumes of O2 and CO2, a decreased respiratory exchange ratio indicating elevated fatty-acid oxidation, and improved insulin tolerance, compared to the male Tmem97+/+ mice. There were no changes in any of these parameters in the female Tmem97-/- mice. Together, these data indicate that the S1R ablation in male and female mice or the S2R ablation in male mice protects against diet-induced adiposity, and that S2R ablation, but not S1R deletion, improves insulin tolerance and enhances fatty-acid oxidation in male mice. Further mechanistic investigations may lead to translational strategies to target differential S1R/S2R regulations and sexual dimorphism for precision treatments of obesity.


Asunto(s)
COVID-19 , Insulinas , Receptores sigma/metabolismo , Adiposidad , Animales , Dióxido de Carbono/farmacología , Dieta Alta en Grasa , Femenino , Glucosa/farmacología , Insulinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Receptores sigma/genética , Caracteres Sexuales , Receptor Sigma-1
8.
Nat Commun ; 13(1): 5606, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153324

RESUMEN

Decreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs. lean visceral and subcutaneous adipose tissue and associates with reduced insulin sensitivity and altered adipocyte metabolic gene expression. Regulatory T cells numbers decline following high-fat diet induction in lean volunteers. We see alteration in major histocompatibility complex II pathway in adipocytes from obese patients and after high fat ingestion, which increases T helper 1 cell numbers and decreases regulatory T cell differentiation. We also observe increased expression of inhibitory co-receptors including programmed cell death protein 1 and OX40 in visceral adipose tissue regulatory T cells from patients with obesity. In human obesity, these global effects of interferon gamma to reduce regulatory T cells and diminish their function appear to instigate adipose inflammation and suppress adipocyte metabolism, leading to insulin resistance.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/metabolismo
9.
Diabetes ; 71(10): 2094-2105, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838316

RESUMEN

That maternal and paternal exercise improve the metabolic health of adult offspring is well established. Tissue and serum metabolites play a fundamental role in the health of an organism, but how parental exercise affects offspring tissue and serum metabolites has not yet been investigated. Here, male and female breeders were fed a high-fat diet and housed with or without running wheels before breeding (males) and before and during gestation (females). Offspring were sedentary and chow fed, with parents as follows: sedentary (Sed), maternal exercise (MatEx), paternal exercise (PatEx), or maternal+paternal exercise (Mat+PatEx). Adult offspring from all parental exercise groups had similar improvement in glucose tolerance and hepatic glucose production. Targeted metabolomics was performed in offspring serum, liver, and triceps muscle. Offspring from MatEx, PatEx, and Mat+PatEx each had a unique tissue metabolite signature, but Mat+PatEx offspring had an additive phenotype relative to MatEx or PatEx alone in a subset of liver and muscle metabolites. Tissue metabolites consistently indicated that the metabolites altered with parental exercise contribute to enhanced fatty acid oxidation. These data identify distinct tissue-specific adaptations and mechanisms for parental exercise-induced improvement in offspring metabolic health. Further mining of this data set could aid the development of novel therapeutic targets to combat metabolic diseases.


Asunto(s)
Dieta Alta en Grasa , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos , Femenino , Glucosa/metabolismo , Hígado/metabolismo , Masculino , Condicionamiento Físico Animal/fisiología
10.
Nutrients ; 14(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35334860

RESUMEN

The prevalence of metabolic diseases is rapidly increasing and a principal contributor to this is diet, including increased consumption of energy-rich foods and foods with added phosphates. Exercise is an effective therapeutic approach to combat metabolic disease. While exercise is effective to combat the detrimental effects of a high-fat diet on metabolic health, the effects of exercise on a high-phosphate diet have not been thoroughly investigated. Here, we investigated the effects of a high-fat or high-phosphate diet in the presence or absence of voluntary exercise on metabolic function in male mice. To do this, mice were fed a low-fat, normal-phosphate diet (LFPD), a high-phosphate diet (HPD) or a high-fat diet (HFD) for 6 weeks and then subdivided into either sedentary or exercised (housed with running wheels) for an additional 8 weeks. An HFD severely impaired metabolic function in mice, increasing total fat mass and worsening whole-body glucose tolerance, while HPD did not induce any notable effects on glucose metabolism. Exercise reverted most of the detrimental metabolic adaptations induced by HFD, decreasing total fat mass and restoring whole-body glucose tolerance and insulin sensitivity. Interestingly, voluntary exercise had a similar effect on LFPD and HPD mice. These data suggest that a high-phosphate diet does not significantly impair glucose metabolism in sedentary or voluntary exercised conditions.


Asunto(s)
Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatos , Condicionamiento Físico Animal/fisiología
11.
Int J Obes (Lond) ; 46(2): 350-358, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716427

RESUMEN

BACKGROUND: Obesity increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes (T2D) after myocardial infarction (MI). Brown adipose tissue (BAT) is important to combat obesity and T2D, and increasing BAT mass by transplantation improves glucose metabolism and cardiac function. The objective of this study was to determine if BAT had a protective effect on glucose tolerance and cardiac function in high-fat diet (HFD) fed mice subjected to a mild MI. METHODS: Male C57BL/6 mice were fed a HFD for eight weeks and then divided into Sham (Sham-operated) and +BAT (mice receiving 0.1 g BAT into their visceral cavity). Sixteen weeks post-transplantation, mice were further subdivided into ±MI (Sham; Sham-MI; +BAT; +BAT-MI) and maintained on a HFD. Cardiac (echocardiography) and metabolic function (glucose and insulin tolerance tests, body composition and exercise tolerance) were assessed throughout 22 weeks post-MI. Quantitative PCR (qPCR) was performed to determine the expression of genes related to metabolic function of perigonadal adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), liver, heart, tibialis anterior skeletal muscle (TA); and BAT. RESULTS: +BAT prevented the increase in left ventricle mass (LVM) and exercise intolerance in response to MI. Similar to what is observed in humans, Sham-MI mice developed IGT post-MI, but this was negated in +BAT-MI mice. IGT was independent of changes in body composition. Genes involved in inflammation, insulin resistance, and metabolism were significantly altered in pgWAT, scWAT, and liver in Sham-MI mice compared to all other groups. CONCLUSIONS: BAT transplantation prevents IGT, the increase in LVM, and exercise intolerance following MI. MI alters the expression of several metabolic-related genes in WAT and liver in Sham-MI mice, suggesting that these tissues may contribute to the impaired metabolic response. Increasing BAT may be an important intervention to prevent the development of IGT or T2D and cardiac remodeling in obese patients post-MI.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Intolerancia a la Glucosa/prevención & control , Infarto del Miocardio/complicaciones , Remodelación Ventricular/fisiología , Tejido Adiposo Pardo/fisiopatología , Animales , Dieta Alta en Grasa/métodos , Dieta Alta en Grasa/estadística & datos numéricos , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Ratones , Ratones Endogámicos C57BL/crecimiento & desarrollo , Ratones Endogámicos C57BL/metabolismo , Infarto del Miocardio/fisiopatología , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/estadística & datos numéricos
12.
Virology ; 559: 111-119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865074

RESUMEN

Influenza A virus (IAV) infection alters lung epithelial cell metabolism in vitro by promoting a glycolytic shift. We hypothesized that this shift benefits the virus rather than the host and that inhibition of glycolysis would improve infection outcomes. A/WSN/33 IAV-inoculated C57BL/6 mice were treated daily from 1 day post-inoculation (d.p.i.) with 2-deoxy-d-glucose (2-DG) to inhibit glycolysis and with the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) to promote flux through the TCA cycle. To block OXPHOS, mice were treated every other day from 1 d.p.i. with the Complex I inhibitor rotenone (ROT). 2-DG significantly decreased nocturnal activity, reduced respiratory exchange ratios, worsened hypoxemia, exacerbated lung dysfunction, and increased humoral inflammation at 6 d.p.i. DCA and ROT treatment normalized oxygenation and airway resistance and attenuated IAV-induced pulmonary edema, histopathology, and nitrotyrosine formation. None of the treatments altered viral replication. These data suggest that a shift to glycolysis is host-protective in influenza.


Asunto(s)
Células Epiteliales/metabolismo , Glucólisis , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Lesión Pulmonar/virología , Pulmón/metabolismo , Animales , Femenino , Pulmón/química , Pulmón/virología , Lesión Pulmonar/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Tirosina/análogos & derivados , Tirosina/análisis , Tirosina/metabolismo , Replicación Viral
13.
Int J Obes (Lond) ; 45(4): 795-807, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33500550

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia, with growing evidence identifying obesity as an important risk factor for the development of AF. Although defective atrial myocyte excitability due to stress-induced remodeling of ion channels is commonly observed in the setting of AF, little is known about the mechanistic link between obesity and AF. Recent studies have identified increased cardiac late sodium current (INa,L) downstream of calmodulin-dependent kinase II (CaMKII) activation as an important driver of AF susceptibility. METHODS: Here, we investigated a possible role for CaMKII-dependent INa,L in obesity-induced AF using wild-type (WT) and whole-body knock-in mice that ablates phosphorylation of the Nav1.5 sodium channel and prevents augmentation of the late sodium current (S571A; SA mice). RESULTS: A high-fat diet (HFD) increased susceptibility to arrhythmias in WT mice, while SA mice were protected from this effect. Unexpectedly, SA mice had improved glucose homeostasis and decreased body weight compared to WT mice. However, SA mice also had reduced food consumption compared to WT mice. Controlling for food consumption through pair feeding of WT and SA mice abrogated differences in weight gain and AF inducibility, but not atrial fibrosis, premature atrial contractions or metabolic capacity. CONCLUSIONS: These data demonstrate a novel role for CaMKII-dependent regulation of Nav1.5 in mediating susceptibility to arrhythmias and whole-body metabolism under conditions of diet-induced obesity.


Asunto(s)
Fibrilación Atrial/prevención & control , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Obesidad/fisiopatología , Animales , Dieta Alta en Grasa/efectos adversos , Técnicas de Sustitución del Gen , Glucosa/metabolismo , Homeostasis , Masculino , Mexiletine/farmacología , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación
14.
Brain Pathol ; 31(1): 84-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32654284

RESUMEN

Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.


Asunto(s)
Apnea/fisiopatología , Proteínas de Homeodominio/metabolismo , Hipoventilación/congénito , Neuronas Motoras/metabolismo , Neurogénesis/fisiología , Apnea Central del Sueño/fisiopatología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Apnea/etiología , Modelos Animales de Enfermedad , Hipoventilación/complicaciones , Hipoventilación/fisiopatología , Ratones , Fenotipo , Apnea Central del Sueño/complicaciones
15.
Circulation ; 143(2): 145-159, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106031

RESUMEN

BACKGROUND: Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function. METHODS: To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation. We then performed lipidomics and identified an increase in the lipokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME). We utilized a mouse model with sustained overexpression of 12,13-diHOME and investigated the role of 12,13-diHOME in a nitric oxide synthase type 1 deficient (NOS1-/-) mouse and in isolated cardiomyocytes to determine effects on function and respiration. We also investigated 12,13-diHOME in a cohort of human patients with heart disease. RESULTS: Here, we determined that transplantation of BAT (+BAT) improves cardiac function via the release of the lipokine 12,13-diHOME. Sustained overexpression of 12,13-diHOME using tissue nanotransfection negated the deleterious effects of a high-fat diet on cardiac function and remodeling, and acute injection of 12,13-diHOME increased cardiac hemodynamics via direct effects on the cardiomyocyte. Furthermore, incubation of cardiomyocytes with 12,13-diHOME increased mitochondrial respiration. The effects of 12,13-diHOME were absent in NOS1-/- mice and cardiomyocytes. We also provide the first evidence that 12,13-diHOME is decreased in human patients with heart disease. CONCLUSIONS: Our results identify an endocrine role for BAT to enhance cardiac function that is mediated by regulation of calcium cycling via 12,13-diHOME and NOS1.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/trasplante , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/terapia , Lipidómica/métodos , Ácidos Oléicos/metabolismo , Anciano , Animales , Células Cultivadas , Estudios de Cohortes , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ácidos Oléicos/administración & dosificación , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología
16.
Nat Metab ; 2(8): 678-687, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32694823

RESUMEN

Poor maternal environments, such as under- or overnutrition, can increase the risk for the development of obesity, type 2 diabetes and cardiovascular disease in offspring1-9. Recent studies in animal models have shown that maternal exercise before and during pregnancy abolishes the age-related development of impaired glucose metabolism10-15, decreased cardiovascular function16 and increased adiposity11,15; however, the underlying mechanisms for maternal exercise to improve offspring's health have not been identified. In the present study, we identify an exercise-induced increase in the oligosaccharide 3'-sialyllactose (3'-SL) in milk in humans and mice, and show that the beneficial effects of maternal exercise on mouse offspring's metabolic health and cardiac function are mediated by 3'-SL. In global 3'-SL knockout mice (3'-SL-/-), maternal exercise training failed to improve offspring metabolic health or cardiac function in mice. There was no beneficial effect of maternal exercise on wild-type offspring who consumed milk from exercise-trained 3'-SL-/- dams, whereas supplementing 3'-SL during lactation to wild-type mice improved metabolic health and cardiac function in offspring during adulthood. Importantly, supplementation of 3'-SL negated the detrimental effects of a high-fat diet on body composition and metabolism. The present study reveals a critical role for the oligosaccharide 3'-SL in milk to mediate the effects of maternal exercise on offspring's health. 3'-SL supplementation is a potential therapeutic approach to combat the development of obesity, type 2 diabetes and cardiovascular disease.


Asunto(s)
Estado de Salud , Corazón/fisiología , Leche/química , Oligosacáridos/metabolismo , Condicionamiento Físico Animal/fisiología , Adulto , Animales , Composición Corporal , Dieta Alta en Grasa/efectos adversos , Ejercicio Físico/fisiología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Leche Humana/química , Miocardio/metabolismo , Oligosacáridos/análisis , Oligosacáridos/química , Oligosacáridos/genética
17.
Biomaterials ; 239: 119839, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065973

RESUMEN

Differences in glucose uptake in peripheral and neural tissues account for the reduced efficacy of insulin in nervous tissues. Herein, we report the design of short peptides, referred as amino acid compounds (AAC) with and without a modified side chain moiety. At nanomolar concentrations, a candidate therapeutic molecule, AAC2, containing a 7-(diethylamino) coumarin-3-carboxamide side-chain improved glucose control in human peripheral adipocytes and the endothelial brain barrier cells by activation of insulin-insensitive glucose transporter 1 (GLUT1). AAC2 interacted specifically with the leptin receptor (LepR) and activated atypical protein kinase C zeta (PKCς) to increase glucose uptake. The effects induced by AAC2 were absent in leptin receptor-deficient predipocytes and in Leprdb mice. In contrast, AAC2 established glycemic control altering food intake in leptin-deficient Lepob mice. Therefore, AAC2 activated the LepR and acted in a cytokine-like manner distinct from leptin. In a monogenic Ins2Akita mouse model for the phenotypes associated with type 1 diabetes, AAC2 rescued systemic glucose uptake in these mice without an increase in insulin levels and adiposity, as seen in insulin-treated Ins2Akita mice. In contrast to insulin, AAC2 treatment increased brain mass and reduced anxiety-related behavior in Ins2Akita mice. Our data suggests that the unique mechanism of action for AAC2, activating LepR/PKCς/GLUT1 axis, offers an effective strategy to broaden glycemic control for the prevention of diabetic complications of the nervous system and, possibly, other insulin insensitive or resistant tissues.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Aminoácidos , Animales , Ansiedad , Diabetes Mellitus Experimental/tratamiento farmacológico , Insulina , Ratones , Ratones Endogámicos C57BL , Receptores de Leptina
18.
Life Sci ; 239: 116885, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31655193

RESUMEN

BACKGROUND: Studies have demonstrated that exposure to fine particulate matter (PM2.5) is linked to cardiovascular disease (CVD), which is exacerbated in patients with pre-existing conditions such as obesity. In the present study, we examined cardiac function of obese mice exposed to PM2.5 and determined if mild exercise affected cardiac function. METHODS: Obese mice (ob/ob) (leptin deficient, C57BL/6J background) were exposed to either filtered air (FA) or PM2.5 at an average concentration of 32 µg/m3 for 6 h/day, 5 days/week for 9 months. Following exposure, mice were divided into four groups: (1) FA sedentary, (2) FA treadmill exercise, (3) PM2.5 sedentary, and (4) PM2.5 treadmill exercise and all mice were analyzed after 8 weeks of exercise training. RESULTS: Echocardiography showed increased left ventricular end systolic (LVESd) and diastolic (LVEDd) diameters in PM2.5 sedentary mice compared to FA sedentary mice. There was increased expression of ICAM1, VCAM and CRP markers in sedentary PM2.5 mice compared to FA mice. Both FA and PM2.5 exercised mice showed decreased posterior wall thickness in systole compared to FA sedentary mice, coupled with altered expression of inflammatory markers following exercise. CONCLUSION: Obese mice exposed to PM2.5 for 9 months showed cardiac dysfunction, which was not improved following mild exercise training.


Asunto(s)
Cardiopatías/metabolismo , Obesidad/metabolismo , Material Particulado/efectos adversos , Contaminantes Atmosféricos , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Cardiopatías/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Miocitos Cardíacos , Tamaño de la Partícula , Condicionamiento Físico Animal/fisiología
19.
Physiol Rep ; 7(14): e14158, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353827

RESUMEN

Prior work established that exercise alleviates muscle function loss in a clinically relevant rodent model mimicking the clinical sequelae of severely burned patients. On the basis of these data, we posit that pharmacologic treatment with insulin combined with exercise further mitigates loss of muscle function following severe burn with immobilization. Twenty-four Sprague-Dawley rats were assessed and trained to complete a climbing exercise. All rats followed a standardized protocol to mimic severe burn patients (40% total body surface area scald burn); all rats were immediately placed into a hindlimb unloading apparatus to simulate bedrest. The rats were then randomly assigned to four treatment groups: saline vehicle injection without exercise (VEH/NEX), insulin (5 U/kg) injection without exercise (INS/NEX), saline vehicle with daily exercise (VEH/EX), and insulin with daily exercise (INS/EX). The animals were assessed for 14 days following injury. The groups were compared for multiple variables. Isometric tetanic (Po) and twitch (Pt) forces were significantly elevated in the plantaris and soleus muscles of the INS/EX rats (P < 0.05). Genomic analysis revealed mechanistic causes with specific candidate changes. Molecular analysis of INS/EX rats revealed Akt phosphorylated by PDPK1 was increased with this treatment, and it further activated downstream signals mTOR, eEF2, and GSK3-ß (P < 0.05). Furthermore, muscle RING-finger protein-1 (MuRF-1), an E3 ubiquitin ligase, was reduced in the INS/EX group (P < 0.05). Insulin and resistance exercise have a positive combined effect on the muscle function recovery in this clinically relevant rodent model of severe burn. Both treatments altered signaling pathways of increasing protein synthesis and decreasing protein degradation.


Asunto(s)
Quemaduras/terapia , Insulina/uso terapéutico , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/métodos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Quemaduras/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Suspensión Trasera/métodos , Insulina/administración & dosificación , Masculino , Contracción Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
iScience ; 11: 425-439, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30661000

RESUMEN

Exercise affects whole-body metabolism through adaptations to various tissues, including adipose tissue (AT). Recent studies investigated exercise-induced adaptations to AT, focusing on inguinal white adipose tissue (WAT), perigonadal WAT, and interscapular brown adipose tissue (iBAT). Although these AT depots play important roles in metabolism, they account for only ∼50% of the AT mass in a mouse. Here, we investigated the effects of 3 weeks of exercise training on all 14 AT depots. Exercise induced depot-specific effects in genes involved in mitochondrial activity, glucose metabolism, and fatty acid uptake and oxidation in each adipose tissue (AT) depot. These data demonstrate that exercise training results in unique responses in each AT depot; identifying the depot-specific adaptations to AT in response to exercise is essential to determine how AT contributes to the overall beneficial effect of exercise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...