Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1363407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590437

RESUMEN

Introduction: Influenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI. Methods: To investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells. Results: We demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors. Discussion: IAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza.


Asunto(s)
Lesión Renal Aguda , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Muerte Celular Regulada , Humanos , Proteoma/metabolismo , Subtipo H3N2 del Virus de la Influenza A/fisiología , Replicación Viral/fisiología , Riñón/patología , Infecciones por Orthomyxoviridae/patología
2.
Redox Biol ; 71: 103093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382185

RESUMEN

Solid tumors are characterized by hypoxic areas, which are prone for macrophage infiltration. Once infiltrated, macrophages polarize to tumor associated macrophages (TAM) to support tumor progression. Therefore, the crosstalk between TAMs and tumor cells is of current interest for the development of novel therapeutic strategies. These may comprise induction of an iron- and lipid peroxidation-dependent form of cell death, known as ferroptosis. To study the macrophage - tumor cell crosstalk we polarized primary human macrophages towards a TAM-like phenotype, co-cultured them with HT1080 fibrosarcoma cells, and analyzed the tumor cell response to ferroptosis induction. In TAMs the expression of ceruloplasmin mRNA increased, which was driven by hypoxia inducible factor 2 and signal transducer and activator of transcription 1. Subsequently, ceruloplasmin mRNA was transferred from TAMs to HT1080 cells via extracellular vesicles. In tumor cells, mRNA was translated into protein to protect HT1080 cells from RSL3-induced ferroptosis. Mechanistically this was based on reduced iron abundance and lipid peroxidation. Interestingly, in naïve macrophages also hypoxia induced ceruloplasmin under hypoxia and a co-culture of HT1080 cells with hypoxic macrophages recapitulated the protective effect observed in TAM co-cultures. In conclusion, TAMs provoke tumor cells to release iron and thereby protect them from lipid peroxidation/ferroptosis.


Asunto(s)
Ferroptosis , Fibrosarcoma , Humanos , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Macrófagos Asociados a Tumores/metabolismo , ARN Mensajero/genética , Hipoxia/metabolismo , Fibrosarcoma/genética , Hierro/metabolismo , Microambiente Tumoral
3.
Virus Res ; 342: 199337, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346476

RESUMEN

Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.


Asunto(s)
Lesión Renal Aguda , Marburgvirus , Humanos , Animales , Marburgvirus/genética , Metabolismo Energético , Perfilación de la Expresión Génica , Inmunidad
4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834040

RESUMEN

The recovery of cells after tissue and organ injury is a complex process [...].


Asunto(s)
Regeneración
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446246

RESUMEN

Renal proximal tubular epithelial cells (PTCs) are central players during renal inflammation. In response to inflammatory signals, PTCs not only self-express altered mRNAs, microRNAs (miRNAs), proteins, and lipids, but also release altered extracellular vesicles (EVs). These EVs also carry inflammation-specific cargo molecules and are key players in cell-cell-communication. Understanding the precise molecular and cellular mechanisms that lead to inflammation in the kidney is the most important way to identify early targets for the prevention or treatment of acute kidney injury. Therefore, highly purified human PTCs were used as an in vitro model to study the cellular response to an inflammatory microenvironment. A cytokine-induced inflammatory system was established to analyze different miRNA expression in cells and their EVs. In detail, we characterized the altered miR expression of PTCs and their released EVs during induced inflammation and showed that 12 miRNAs were significantly regulated in PTCs (6 upregulated and 6 downregulated) and 9 miRNAs in EVs (8 upregulated and 1 downregulated). We also showed that only three of the miRNAs were found to overlap between cells and EVs. As shown by the KEGG pathway analysis, these three miRNAs (miR-146a-5p, miR-147b, and miR-155-5p) are functionally involved in the regulation of the Toll-like receptor signaling pathway and significantly correlated with the inflammatory mediators IL6 and ICAM1 released by stimulated PTCs. Especially with regard to a possible clinical use of miRs as new biomarkers, an accurate characterization of the miR expression altered during inflammatory processes is of enormous importance.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768138

RESUMEN

Inflammation is intimately involved in the pathogenesis of diabetic kidney disease. Inhibition of SGLT-2 by a specific class of drugs, gliflozins, has been shown to reduce inflammation and attenuate the progression of diabetic nephropathy, in addition to its main effect of inhibiting renal glucose reabsorption. We used highly purified human renal proximal tubular epithelial cells (PTCs) as an in vitro model to study the cellular response to a diabetic (high glucose) and inflammatory (cytokines) microenvironment and the effect of gliflozins. In this context, we investigated the influence of SGLT-2 inhibition by empa- and dapagliflozin (500 nM) on the expression of pro-inflammatory factors (IL-1ß, IL-6, TNF-α, MCP-1, and ICAM-1). The results clearly indicate an anti-inflammatory effect of both gliflozins. Although induced expression of the four cytokines was only slightly attenuated, there was a clear effect on the expression of the adhesion molecule ICAM-1, a master regulator of cellular responses in inflammation and injury resolution. The induced expression of ICAM-1 mRNA was significantly reduced by approximately 13.5% by empagliflozin and also showed an inhibitory trend with dapagliflozin. However, induced ICAM-1 protein expression was significantly inhibited from 24.71 ± 1.0 ng/mL to 18.81 ± 3.9 (empagliflozin) and 19.62 ± 2.1 ng/mL (dapagliflozin). In conclusion, an additional anti-inflammatory effect of empa- and dapagliflozin in therapeutically observed concentrations was demonstrated in primary human PTCs in vitro.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Diabetes Mellitus/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012587

RESUMEN

The biomedical consequences of allogeneic blood transfusions and the possible pathomechanisms of transfusion-related morbidity and mortality are still not entirely understood. In retrospective studies, allogeneic transfusion was associated with increased rates of cancer recurrence, metastasis and death in patients with colorectal cancer. However, correlation does not imply causation. The purpose of this study was to elucidate this empirical observation further in order to address insecurity among patients and clinicians. We focused on the in vitro effect of microparticles derived from red blood cell units (RMPs). We incubated different colon carcinoma cells with RMPs and analyzed their effects on growth, invasion, migration and tumor marker expression. Furthermore, effects on Wnt, Akt and ERK signaling were explored. Our results show RMPs do not seem to affect functional and phenotypic characteristics of different colon carcinoma cells and did not induce or inhibit Wnt, Akt or ERK signaling, albeit in cell culture models lacking tumor microenvironment. Allogeneic blood transfusions are associated with poor prognosis, but RMPs do not seem to convey tumor-enhancing effects. Most likely, the circumstances that necessitate the transfusion, such as preoperative anemia, tumor stage, perioperative blood loss and extension of surgery, take center stage.


Asunto(s)
Carcinoma , Micropartículas Derivadas de Células , Neoplasias del Colon , Carcinoma/complicaciones , Micropartículas Derivadas de Células/patología , Neoplasias del Colon/patología , Humanos , Recurrencia Local de Neoplasia/etiología , Proteínas Proto-Oncogénicas c-akt , Estudios Retrospectivos , Microambiente Tumoral
8.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806391

RESUMEN

Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Vesículas Extracelulares/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
9.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35110370

RESUMEN

Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type-specific changes over time. Our findings revealed shared pathways modified upon infection with both viruses, as well as SARS-CoV-2-specific host cell modulation driving key changes in innate immune activation and cellular protein quality control. Notably, MERS-CoV infection-induced specific changes in mitochondrial biology that were not observed in response to SARS-CoV-2 infection. Furthermore, we identified extensive modulation in pathways associated with kidney failure that changed in a virus- and cell type-specific manner. In summary, we provide an overview of the effects of SARS-CoV-2 or MERS-CoV infection on primary renal epithelial cells revealing key pathways that may be essential for viral replication.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/virología , Riñón , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Proteoma , Proteómica , SARS-CoV-2/fisiología , Biomarcadores , COVID-19/metabolismo , COVID-19/virología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Biología Computacional/métodos , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Túbulos Renales Distales , Túbulos Renales Proximales , Mitocondrias/genética , Mitocondrias/metabolismo , Cultivo Primario de Células , Proteómica/métodos , Replicación Viral
10.
Front Oncol ; 12: 789284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198441

RESUMEN

Novel therapeutic strategies are urgently needed for advanced metastatic prostate cancer (PCa). Phytochemicals used in Traditional Chinese Medicine seem to exhibit tumor suppressive properties. Therefore, the therapeutic potential of artesunate (ART) on the progressive growth of therapy-sensitive (parental) and docetaxel (DX)-resistant PCa cells was investigated. Parental and DX-resistant PCa cell lines DU145, PC3, and LNCaP were incubated with artesunate (ART) [1-100 µM]. ART-untreated and 'non-cancerous' cells served as controls. Cell growth, proliferation, cell cycle progression, cell death and the expression of involved proteins were evaluated. ART, dose- and time-dependently, significantly restricted cell growth and proliferation of parental and DX-resistant PCa cells, but not of 'normal, non-cancerous' cells. ART-induced growth and proliferation inhibition was accompanied by G0/G1 phase arrest and down-regulation of cell cycle activating proteins in all DX-resistant PCa cells and parental LNCaP. In the parental and DX-resistant PC3 and LNCaP cell lines, ART also promoted apoptotic cell death. Ferroptosis was exclusively induced by ART in parental and DX-resistant DU145 cells by increasing reactive oxygen species (ROS). The anti-cancer activity displayed by ART took effect in all three PCa cell lines, but through different mechanisms of action. Thus, in advanced PCa, ART may hold promise as a complementary treatment together with conventional therapy.

11.
Front Immunol ; 12: 693897, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267759

RESUMEN

Hematopoietic stem cell transplantation (HSCT) has been proposed as a promising therapeutic opportunity to improve immunity and prevent hematologic malignancies in Ataxia-telangiectasia (A-T). However, experience in the transplantation strategy for A-T patients is still scarce. The aim of this study was to investigate whether different approaches of HSCT are feasible in regard to graft versus host response and sufficient concerning functional immune reconstitution. Atm-deficient mice were treated with a clinically relevant non-myeloablative host-conditioning regimen and transplanted with CD90.2-depleted, green fluorescent protein (GFP)-expressing, and ataxia telangiectasia mutated (ATM)-competent bone marrow donor cells in a syngeneic, haploidentical or allogeneic setting. Like syngeneic HSCT, haploidentical HSCT, but not allogeneic HSCT extended the lifespan of Atm-deficient mice through the reduction of thymic tumors and normalized T-cell numbers. Donor-derived splenocytes isolated from transplanted Atm-deficient mice filled the gap of cell loss in the naïve T-cell population and raised CD4 cell functionality up to wild-type level. Interestingly, HSCT using heterozygous donor cells let to a significantly improved survival of Atm-deficient mice and increased CD4 cell numbers as well as CD4 cell functionality equivalent to HSCT using with wild-type donor cells. Our data provided evidence that haploidentical HSCT could be a feasible strategy for A-T, possibly even if the donor is heterozygous for ATM. However, this basic research cannot substitute any research in humans.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Reconstitución Inmune , Linfoma/prevención & control , Neoplasias del Timo/prevención & control , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Células Cultivadas , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Memoria Inmunológica , Activación de Linfocitos , Linfoma/genética , Linfoma/inmunología , Linfoma/metabolismo , Ratones Noqueados , Prueba de Estudio Conceptual , Neoplasias del Timo/genética , Neoplasias del Timo/inmunología , Neoplasias del Timo/metabolismo , Quimera por Trasplante , Trasplante Haploidéntico/efectos adversos , Trasplante Isogénico/efectos adversos
13.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808970

RESUMEN

Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine.


Asunto(s)
Vesículas Extracelulares/genética , Proteoma/genética , Proteómica , Medicina Regenerativa/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Regeneración/genética
14.
Stem Cell Reports ; 16(3): 419-427, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32950067

RESUMEN

Previous studies reported on the safety and applicability of mesenchymal stem/stromal cells (MSCs) to ameliorate pulmonary inflammation in acute respiratory distress syndrome (ARDS). Thus, multiple clinical trials assessing the potential of MSCs for COVID-19 treatment are underway. Yet, as SARS-inducing coronaviruses infect stem/progenitor cells, it is unclear whether MSCs could be infected by SARS-CoV-2 upon transplantation to COVID-19 patients. We found that MSCs from bone marrow, amniotic fluid, and adipose tissue carry angiotensin-converting enzyme 2 and transmembrane protease serine subtype 2 at low levels on the cell surface under steady-state and inflammatory conditions. We did not observe SARS-CoV-2 infection or replication in MSCs at steady state under inflammatory conditions, or in direct contact with SARS-CoV-2-infected Caco-2 cells. Further, indoleamine 2,3-dioxygenase 1 production in MSCs was not impaired in the presence of SARS-CoV-2. We show that MSCs are resistant to SARS-CoV-2 infection and retain their immunomodulation potential, supporting their potential applicability for COVID-19 treatment.


Asunto(s)
COVID-19/virología , Inflamación/virología , Células Madre Mesenquimatosas/virología , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Células CACO-2 , Línea Celular Tumoral , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Serina Endopeptidasas/metabolismo , Tratamiento Farmacológico de COVID-19
15.
Cells ; 9(9)2020 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872606

RESUMEN

Adipose tissue is a rich, ubiquitous, and easily accessible source for multipotent mesenchymal stromal/stem cells (MSCs), so-called adipose-derived stromal/stem cells (ASCs) [...].


Asunto(s)
Tejido Adiposo/metabolismo , Células del Estroma/metabolismo , Diferenciación Celular , Humanos
16.
Cells ; 9(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531978

RESUMEN

Pulmonary failure is the main cause of morbidity and mortality in the human chromosomal instability syndrome Ataxia-telangiectasia (A-T). Major phenotypes include recurrent respiratory tract infections and bronchiectasis, aspiration, respiratory muscle abnormalities, interstitial lung disease, and pulmonary fibrosis. At present, no effective pulmonary therapy for A-T exists. Cell therapy using adipose-derived mesenchymal stromal/stem cells (ASCs) might be a promising approach for tissue regeneration. The aim of the present project was to investigate whether ASCs migrate into the injured lung parenchyma of Atm-deficient mice as an indication of incipient tissue damage during A-T. Therefore, ASCs isolated from luciferase transgenic mice (mASCs) were intravenously transplanted into Atm-deficient and wild-type mice. Retention kinetics of the cells were monitored using in vivo bioluminescence imaging (BLI) and completed by subsequent verification using quantitative real-time polymerase chain reaction (qRT-PCR). The in vivo imaging and the qPCR results demonstrated migration accompanied by a significantly longer retention time of transplanted mASCs in the lung parenchyma of Atm-deficient mice compared to wild type mice. In conclusion, our study suggests incipient damage in the lung parenchyma of Atm-deficient mice. In addition, our data further demonstrate that a combination of luciferase-based PCR together with BLI is a pivotal tool for tracking mASCs after transplantation in models of inflammatory lung diseases such as A-T.


Asunto(s)
Ataxia Telangiectasia/complicaciones , Enfermedades Pulmonares/etiología , Lesión Pulmonar/etiología , Células Madre Mesenquimatosas/metabolismo , Animales , Ataxia Telangiectasia/patología , Modelos Animales de Enfermedad , Humanos , Enfermedades Pulmonares/fisiopatología , Lesión Pulmonar/fisiopatología , Ratones , Ratones Transgénicos
17.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188161

RESUMEN

Lipocalin-2 (Lcn-2) is rapidly upregulated in macrophages after renal tubular injury and acts as renoprotective and pro-regenerative agent. Lcn-2 possesses the ability to bind and transport iron with high affinity. Therefore, the present study focuses on the decisive role of the Lcn-2 iron-load for its pro-regenerative function. Primary mouse tubular epithelial cells were isolated from kidney tissue of wildtype mice and incubated with 5µM Cisplatin for 24h to induce injury. Bone marrow-derived macrophages of wildtype and Lcn-2-/- mice were isolated and polarized with IL-10 towards an anti-inflammatory, iron-release phenotype. Their supernatants as well as recombinant iron-loaded holo-Lcn-2 was used for stimulation of Cisplatin-injured tubular epithelial cells. Incubation of tubular epithelial cells with wildtype supernatants resulted in less damage and induced cellular proliferation, whereas in absence of Lcn-2 no protective effect was observed. Epithelial integrity as well as cellular proliferation showed a clear protection upon rescue experiments applying holo-Lcn-2. Notably, we detected a positive correlation between total iron amounts in tubular epithelial cells and cellular proliferation, which, in turn, reinforced the assumed link between availability of Lcn-2-bound iron and recovery. We hypothesize that macrophage-released Lcn-2-bound iron is provided to tubular epithelial cells during toxic cell damage, whereby injury is limited and recovery is favored.


Asunto(s)
Células Epiteliales/metabolismo , Riñón/metabolismo , Lipocalina 2/metabolismo , Macrófagos/metabolismo , Regeneración , Animales , Proliferación Celular , Cisplatino/efectos adversos , Hierro/metabolismo , Riñón/efectos de los fármacos , Riñón/lesiones , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes , Regulación hacia Arriba
18.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050569

RESUMEN

Damage to kidney cells can occur due to a variety of ischemic and toxic insults and leads to inflammation and cell death, which can result in acute kidney injury (AKI) [...].


Asunto(s)
Enfermedades Renales/fisiopatología , Riñón/fisiología , Animales , Humanos , Riñón/metabolismo , Riñón/fisiopatología , Enfermedades Renales/metabolismo , Regeneración
19.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936266

RESUMEN

Gliflozins are inhibitors of the renal proximal tubular sodium-glucose co-transporter-2 (SGLT-2), that inhibit reabsorption of urinary glucose and they are able to reduce hyperglycemia in patients with type 2 diabetes. A renoprotective function of gliflozins has been proven in diabetic nephropathy, but harmful side effects on the kidney have also been described. In the current project, primary highly purified human renal proximal tubular epithelial cells (PTCs) have been shown to express functional SGLT-2, and were used as an in vitro model to study possible cellular damage induced by two therapeutically used gliflozins: empagliflozin and dapagliflozin. Cell viability, proliferation, and cytotoxicity assays revealed that neither empagliflozin nor dapagliflozin induce effects in PTCs cultured in a hyperglycemic environment, or in co-medication with ramipril or hydro-chloro-thiazide. Oxidative stress was significantly lowered by dapagliflozin but not by empagliflozin. No effect of either inhibitor could be detected on mRNA and protein expression of the pro-inflammatory cytokine interleukin-6 and the renal injury markers KIM-1 and NGAL. In conclusion, empa- and dapagliflozin in therapeutic concentrations were shown to induce no direct cell injury in cultured primary renal PTCs in hyperglycemic conditions.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Glucósidos/farmacología , Transportador 2 de Sodio-Glucosa/genética , Compuestos de Bencidrilo/efectos adversos , Glucemia/efectos de los fármacos , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/efectos adversos , Humanos , Hipoglucemiantes/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Riñón/efectos de los fármacos , Riñón/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Estrés Oxidativo/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
20.
Front Immunol ; 10: 2785, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849966

RESUMEN

Background: Ataxia-telangiectasia (A-T) is a multisystem disorder with progressive cerebellar ataxia, immunodeficiency, chromosomal instability, and increased cancer susceptibility. Cellular immunodeficiency is based on naïve CD4+ and CD8+ T-cell lymphopenia. Hematopoietic stem cell transplantation (HSCT) offers a potential to cure immunodeficiency and cancer due to restoration of the lymphopoietic system. The aim of this investigation was to analyze the effect of HSCT on naïve CD4+ as well as CD8+ T-cell numbers in A-T. Methods: We analyzed total numbers of peripheral naïve (CD45RA+CD62L+) and memory (CD45RO+CD62L-) CD4+ and CD8+ T-cells of 32 A-T patients. Naïve (CD62LhighCD44low) and memory (CD62LlowCD44high) T-cells were also measured in Atm-deficient mice before and after HSCT with GFP-expressing bone marrow derived hematopoietic stem cells. In addition, we analyzed T-cells in the peripheral blood of two A-T patients after HLA-identic allogeneic HSCT. Results: Like in humans, naïve CD4+ as well as naïve CD8+ lymphocytes were decreased in Atm-deficient mice. HSCT significantly inhibited thymic lymphomas and increased survival time in these animals. Donor cell chimerism increased up to more than 50% 6 months after HSCT accompanied by a significant increase of naïve CD4 and CD8 T-cell subpopulations, but not of memory T-cells. This finding was also identified in the blood of the A-T patients after HSCT. Conclusion: HSCT seems to be a feasible strategy to overcome immunodeficiency and might be a conceivable strategy to avoid T-cell driven cancer in A-T at higher risk for malignancy. Naïve CD4 and CD8 T-cells counts are suitable markers for monitoring immune reconstitution post-HSCT. However, risks and benefits of HSCT in A-T have to be properly weighted.


Asunto(s)
Ataxia Telangiectasia/terapia , Linfocitos T CD4-Positivos/citología , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Animales , Ataxia Telangiectasia/sangre , Ataxia Telangiectasia/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Niño , Preescolar , Femenino , Humanos , Reconstitución Inmune , Memoria Inmunológica , Recuento de Linfocitos , Masculino , Ratones , Ratones Noqueados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...