Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(13): 5515-5523, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38595773

RESUMEN

We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38619160

RESUMEN

Understanding and tuning epitaxial complex oxide films are crucial in controlling the behavior of devices and catalytic processes. Substrate-induced strain, doping, and layer growth are known to influence the electronic and magnetic properties of the bulk of the film. In this study, we demonstrate a clear distinction between the bulk and surface of thin films of La0.67Sr0.33MnO3 in terms of chemical composition, electronic disorder, and surface morphology. We use a combined experimental approach of X-ray-based characterization methods and scanning probe microscopy. Using X-ray diffraction and resonant X-ray reflectivity, we uncover surface nonstoichiometry in the strontium and lanthanum alongside an accumulation of oxygen vacancies. With scanning tunneling microscopy, we observed an electronic phase separation (EPS) on the surface related to this nonstoichiometry. The EPS is likely driving the temperature-dependent resistivity transition and is a cause of proposed mixed-phase ferromagnetic and paramagnetic states near room temperature in these thin films.

3.
Nat Commun ; 14(1): 8284, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092726

RESUMEN

Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design. We investigate the (001), (110) and (111) facets of a LaNiO3-δ electrocatalyst for water oxidation using electrochemical measurements, X-ray spectroscopy, and density functional theory calculations with a Hubbard U term. We reveal that the (111) overpotential is ≈ 30-60 mV lower than for the other facets. While a surface transformation into oxyhydroxide-like NiOO(H) may occur for all three orientations, it is more pronounced for (111). A structural mismatch of the transformed layer with the underlying perovskite for (001) and (110) influences the ratio of Ni2+ and Ni3+ to Ni4+ sites during the reaction and thereby the binding energy of reaction intermediates, resulting in the distinct catalytic activities of the transformed facets.

4.
Chem Commun (Camb) ; 59(31): 4562-4577, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36920360

RESUMEN

Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.

5.
ACS Nano ; 17(6): 5329-5339, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36913300

RESUMEN

High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.

6.
J Am Chem Soc ; 144(39): 17966-17979, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130265

RESUMEN

The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.

7.
Front Chem ; 10: 913419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815219

RESUMEN

The oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity. In this perspective, we discuss the role that epitaxial catalysts play in identifying this activity-stability-dilemma and introduce examples of how they can help overcome it. After a brief review of previously observed activity-stability-relationships, we will investigate the dependence of both activity and stability as a function of crystal facet. Our experiments reveal that the inverse relationship is not universal and does not hold for all perovskite oxides in the same manner. In fact, we find that facet-controlled epitaxial La0.6Sr0.4CoO3-δ catalysts follow the inverse relationship, while for LaNiO3-δ, the (111) facet is both the most active and the most stable. In addition, we show that both activity and stability can be enhanced simultaneously by moving from La-rich to Ni-rich termination layers. These examples show that the previously observed inverse activity-stability-relationship can be overcome for select materials and through careful control of the atomic arrangement at the solid-liquid interface. This realization re-opens the search for active and stable catalysts for water electrolysis that are made from earth-abundant elements. At the same time, these results showcase that additional stabilization via material design strategies will be required to induce a general departure from inverse stability-activity relationships among the transition metal oxide catalysts to ultimately grant access to the full range of available oxides for OER catalysis.

8.
Faraday Discuss ; 236(0): 141-156, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35543196

RESUMEN

Nanoparticle formation by dopant exsolution (migration) from bulk host lattices is a promising approach to generate highly stable nanoparticles with tunable size, shape, and distribution. We investigated Ni dopant migration from strontium titanate (STO) lattices, forming metallic Ni nanoparticles at STO surfaces. Ex situ scanning probe measurements confirmed the presence of nanoparticles at the H2 treated surface. In situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) revealed reduction from Ni2+ to Ni0 as Ni dopants migrated to the surface during heating treatments in H2. During Ni migration and reduction, the Sr and Ti chemical states were mostly unchanged, indicating the selective reduction of Ni during treatment. At the same time, we used in situ ambient pressure grazing incidence X-ray scattering (GIXS) to monitor the particle morphology. As Ni migrated to the surface, it nucleated and grew into compressed spheroidal nanoparticles partially embedded in the STO perovskite surface. These findings provide a detailed picture of the evolution of the nanoparticle surface and subsurface chemical state and morphology as the nanoparticles grow beyond the initial nucleation and growth stages.

9.
ACS Appl Mater Interfaces ; 14(12): 14129-14136, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293734

RESUMEN

The Co-O covalency in perovskite oxide cobaltites such as La1-xSrxCoO3 is believed to impact the electrocatalytic activity during electrochemical water splitting at the anode where the oxygen evolution reaction (OER) takes place. Additionally, space charge layers through band bending at the interface to the electrolyte may affect the electron transfer into the electrode, complicating the analysis and identification of true OER activity descriptors. Here, we separate the influence of covalency and band bending in hybrid epitaxial bilayer structures of highly OER-active La0.6Sr0.4CoO3 and undoped and less-active LaCoO3. Ultrathin LaCoO3 capping layers of 2-8 unit cells on La0.6Sr0.4CoO3 show intermediate OER activity between La0.6Sr0.4CoO3 and LaCoO3 evidently caused by the increased surface Co-O covalency compared to single LaCoO3 as detected by X-ray photoelectron spectroscopy. A Mott-Schottkyanalysis revealed low flat band potentials for different LaCoO3 capping layer thicknesses, indicating that no limiting extended space charge layer exists under OER conditions as all catalyst bilayer films exhibited hole accumulation at the surface. The combined X-ray photoelectron spectroscopy and Mott-Schottky analysis thus enables us to differentiate between the influence of the covalency and intrinsic space charge layers, which are indistinguishable in a single physical or electrochemical characterization. Our results emphasize the prominent role of transition metal oxygen covalency in perovskite electrocatalysts and introduce a bilayer approach to fine-tune the surface electronic structure.

10.
Nat Mater ; 20(5): 674-682, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33432142

RESUMEN

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

11.
Adv Mater ; 31(40): e1903391, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31441160

RESUMEN

Redox-based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen-ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen-ion transport properties for resistive-switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X-ray absorption spectromicroscopy, it is demonstrated that the reversible redox-based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5 , and the conductive perovskite phase, SrFeO3 , gives rise to the resistive-switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric-field-induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in-plane direction of the device. In contrast, (111)-grown SrFeO2.5 devices with out-of-plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive-switching mechanism in SrFeOx -based memristive devices within the framework of metal-insulator topotactic phase transitions.

13.
Nano Lett ; 19(1): 54-60, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30241437

RESUMEN

Point defects such as oxygen vacancies cause emergent phenomena such as resistive switching in transition-metal oxides, but their influence on the electron-transport properties is far from being understood. Here, we employ direct mapping of the electronic structure of a memristive device by spectromicroscopy. We find that oxygen vacancies result in in-gap states that we use as input for single-band transport simulations. Because the in-gap states are situated below the Fermi level, they do not contribute to the current directly but impact the shape of the conduction band. Accordingly, we can describe our devices with band-like transport and tunneling across the Schottky barrier at the interface.

14.
Faraday Discuss ; 213(0): 215-230, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30364919

RESUMEN

Resistive switching oxides are highly attractive candidates to emulate synaptic behaviour in artificial neural networks. Whilst the most widely employed systems exhibit filamentary resistive switching, interface-type switching systems based on a tunable tunnel barrier are of increasing interest, since their gradual SET and RESET processes provide an analogue-type of switching required to take over synaptic functionality. Interface-type switching devices often consist of bilayers of one highly mixed-conductive oxide layer and one highly insulating tunnel oxide layer. However, most tunnel oxides used for interface-type switching are also prone to form conducting filaments above a certain voltage bias threshold. We investigated two different tunnel oxide devices, namely, Pr1-xCaxMnO3 (PCMO) with yttria-stabilized ZrO2 (YSZ) tunnel barrier and substoichiometric TaOx with HfO2 tunnel barrier by interface-sensitive, hard X-ray photoelectron spectroscopy (HAXPES) in order to gain insights into the chemical changes during filamentary and interface-type switching. The measurements suggest an exchange of oxygen ions between the mixed conducting oxide layer and the tunnel barrier, that causes an electrostatic modulation of the effective height of the tunnel barrier, as the underlying switching mechanism for the interface-type switching. Moreover, we observe by in operando HAXPES analysis that this field-driven ionic motion across the whole area is sustained even if a filament is formed in the tunnel barrier and the device is transformed into a filamentary-type switching mode.

15.
J Am Chem Soc ; 140(48): 16635-16640, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30418764

RESUMEN

The sustainable development of IT-systems requires a quest for novel concepts to address further miniaturization, performance improvement, and energy efficiency of devices. The realization of these goals cannot be achieved without an appropriate functional material. Herein, we target the technologically important electron modification using single polyoxometalate (POM) molecules envisaged as smart successors of materials that are implemented in today's complementary metal-oxide-semiconductor (CMOS) technology. Lindqvist-type POMs were physisorbed on the Au(111) surface, preserving their structural and electronic characteristics. By applying an external voltage at room temperature, the valence state of the single POM molecule could be changed multiple times through the injection of up to 4 electrons. The molecular electrical conductivity is dependent on the number of vanadium 3d electrons, resulting in several discrete conduction states with increasing conductivity. This fundamentally important finding illustrates the far-reaching opportunities for POM molecules in the area of multiple-state resistive (memristive) switching.

16.
Sci Rep ; 8(1): 10861, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022129

RESUMEN

In this study, we investigated the influence of oxygen non-stoichiometry on the resistive switching performance of tantalum oxide based memristive devices. Thin-films of tantalum oxide were deposited with varying sputter power and oxygen partial pressure. The electroforming voltage was found to decrease with increasing power density or decreased oxygen partial pressure, while the endurance remained stable and the resistance window ROFF/RON was found to increase. In-depth XPS analysis connects these observations to a controllable oxygen sub-stoichiometry in the sputter-deposited films. Our analysis shows that the decrease of the forming voltage results from an increase in carrier density in the as-prepared thin-films, which is induced by the presence of oxygen vacancies.

17.
Adv Mater ; : e1800957, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29882270

RESUMEN

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

18.
ACS Nano ; 11(7): 6921-6929, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28661649

RESUMEN

A major obstacle for the implementation of redox-based memristive memory or logic technology is the large cycle-to-cycle and device-to-device variability. Here, we use spectromicroscopic photoemission threshold analysis and operando XAS analysis to experimentally investigate the microscopic origin of the variability. We find that some devices exhibit variations in the shape of the conductive filament or in the oxygen vacancy distribution at and around the filament. In other cases, even the location of the active filament changes from one cycle to the next. We propose that both effects originate from the coexistence of multiple (sub)filaments and that the active, current-carrying filament may change from cycle to cycle. These findings account for the observed variability in device performance and represent the scientific basis, rather than prior purely empirical engineering approaches, for developing stable memristive devices.

19.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28417593

RESUMEN

The control and rational design of redox-based memristive devices, which are highly attractive candidates for next-generation nonvolatile memory and logic applications, is complicated by competing and poorly understood switching mechanisms, which can result in two coexisting resistance hystereses that have opposite voltage polarity. These competing processes can be defined as regular and anomalous resistive switching. Despite significant characterization efforts, the complex nanoscale redox processes that drive anomalous resistive switching and their implications for current transport remain poorly understood. Here, lateral and vertical mapping of O vacancy concentrations is used during the operation of such devices in situ in an aberration corrected transmission electron microscope to explain the anomalous switching mechanism. It is found that an increase (decrease) in the overall O vacancy concentration within the device after positive (negative) biasing of the Schottky-type electrode is associated with the electrocatalytic release and reincorporation of oxygen at the electrode/oxide interface and is responsible for the resistance change. This fundamental insight presents a novel perspective on resistive switching processes and opens up new technological opportunities for the implementation of memristive devices, as anomalous switching can now be suppressed selectively or used deliberately to achieve the desirable so-called deep Reset.

20.
Nat Commun ; 7: 12398, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27539213

RESUMEN

The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...