Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 218: 26-34, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295677

RESUMEN

In cattle, mating to intact, but not vasectomised, bulls has been shown to modify the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Therefore, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were (co-)incubated for 6 h alone (control), or with epididymal sperm or ejaculated sperm, following which transcriptomic changes in the endometrium were evaluated. Epididymal sperm elicited a more dramatic endometrial response than ejaculated sperm, in terms of the number of differentially expressed genes (DEGs). Indeed, RNA-sequencing data analysis revealed 1912 DEGs in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs were detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. The top pathways associated with genes upregulated by epididymal sperm included T cell regulation and TNF, NF-KB and IL17 signalling. Interestingly, ejaculated sperm induced downregulation of genes associated with T cell immunity and Th17 differentiation, and upregulation of genes involved in NF-KB signalling, in comparison to epididymal sperm. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.


Asunto(s)
Semen , Transcriptoma , Bovinos , Animales , Masculino , Femenino , Semen/metabolismo , FN-kappa B/metabolismo , Espermatozoides/fisiología , Epidídimo/metabolismo , Endometrio/metabolismo , Perfilación de la Expresión Génica/veterinaria , Eyaculación/fisiología
2.
EMBO Rep ; 22(3): e51989, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605056

RESUMEN

During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.


Asunto(s)
Histonas , ARN Largo no Codificante , Animales , Femenino , Silenciador del Gen , Histonas/genética , Histonas/metabolismo , Placenta/metabolismo , Embarazo , ARN Largo no Codificante/genética , Cromosoma X/genética , Inactivación del Cromosoma X/genética
3.
Front Cell Dev Biol ; 8: 547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766237

RESUMEN

An appropriate female reproductive environment is essential for pregnancy success. In several species, including mice, pigs and horses, seminal plasma (SP) components have been shown to modulate this environment, leading to increased embryo viability and implantation. Due to the characteristics of mating in the aforementioned species, SP comes into direct contact with the uterus. However, it is questionable whether any SP reaches the uterus in species that ejaculate inside the vagina, such as humans and cattle. Hence, we hypothesized that sperm, perhaps acting as a vehicle for SP factors, play a more important role in the modulation of the maternal uterine environment in these species. In addition, changes elicited by SP and/or sperm may originate in the vagina and propagate to more distal regions of the female reproductive tract. To test these hypotheses, a bovine model in which heifers were mated to intact or vasectomized bulls or were left unmated was used. RNA-sequencing of endometrial samples collected 24 h after mating with a vasectomized bull did not reveal any differentially expressed genes (DEGs) in comparison with control samples. However, the endometrium of heifers mated with intact bulls exhibited 24 DEGs when compared to heifers mated with vasectomized bulls, and 22 DEGs when compared to unmated control heifers. The expression of a set of cytokines (IL6, IL1A, IL8, and TNFA) and candidate genes identified in the endometrial RNA-sequencing (PLA2G10, CX3CL1, C4BPA, PRSS2, BLA-DQB, and CEBPD) were assessed by RT-qPCR in the vagina and oviductal ampulla. No differences in expression of these genes were observed between treatments in any region. However, mating to both intact and vasectomized bulls induced an increase in IL1A and TNFA expression in the vagina compared to the oviduct. These data indicate that sperm, but not secretions from the accessory glands alone, induce modest changes in endometrial gene expression after natural mating in cattle. However, it is not clear whether this effect is triggered by inherent sperm proteins or SP proteins bound to sperm surface at the time of ejaculation.

4.
Front Cell Dev Biol ; 8: 341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32478076

RESUMEN

A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12-15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating.

5.
Reproduction ; 159(5): 643-657, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32168470

RESUMEN

In cattle, embryo transfer into the uterine horn contralateral to the corpus luteum results in a higher incidence of pregnancy loss compared to transfer into the ipsilateral horn. We have previously reported temporal changes in the endometrial transcriptome during the estrous cycle which differ between uterine horns. The objective of this study was to compare the transcriptomic response of endometrium from the ipsilateral and contralateral horns to an elongating conceptus. Cross-bred beef heifers (n = 16) were synchronized and either used to generate day 14 conceptuses following the transfer of in vitro-produced blastocysts or to obtain day 14 endometrial explants. Conceptuses were recovered on day 14 by post-mortem uterine flushing, placed individually on top of explants collected from the ipsilateral (IPSI-D14) or the contralateral (CONTRA-D14) uterine horn of cyclic heifers, and co-cultured for 6 h. The response to a conceptus was markedly different between uterine horns, with 61 and 239 differentially expressed genes (DEGs; false discovery rate <0.05) in the ipsilateral and contralateral horns, respectively, compared to their controls. Direct comparison between IPSI-D1 and CONTRA-D14 revealed 32 DEGs, including CXCL11, CXCL10, IFIT2, RSAD2 and SAMD9. Gene Ontology analysis of these 32 genes revealed ten enriched biological processes, mainly related to immune response and response to an external stimulus. These data indicate that the endometrial response to the presence of a conceptus varies between uterine horns in the same uterus and may contribute to the higher incidence of pregnancy loss following embryo transfer to the contralateral horn.


Asunto(s)
Cuerpo Lúteo/fisiología , Implantación del Embrión/fisiología , Endometrio/metabolismo , Animales , Bovinos , Transferencia de Embrión/veterinaria , Femenino , Expresión Génica , Embarazo , Transcriptoma
6.
Sci Rep ; 9(1): 15072, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636362

RESUMEN

This study aimed to determine the effect of bull seminal plasma (SP) and sperm on endometrial function. Bovine endometrial explants were incubated with: ejaculated sperm with or without SP, epididymal sperm, or SP alone. Neither ejaculated nor epididymal sperm induced differential expression of IL1A, IL1B, IL6, IL8, PTGES2, TNFA, and LIF. Interestingly, SP had a detrimental effect on endometrial RNA integrity. Addition of an RNase inactivation reagent to SP blocked this effect, evidencing a role for a SP-RNase. Because bulls deposit the ejaculate in the vagina, we hypothesized that the bovine endometrium is more sensitive to SP-RNase than vaginal and cervical tissues (which come into contact with SP during mating), or to endometrium from intrauterine ejaculators (such as the horse). In addition, due to differences in SP-RNase abundance depending on SP collection method (i.e., with an artificial vagina, AV, or by electroejaculation, EE), this effect was also tested. Bull SP, collected by AV, degrades RNA of mare endometrium, and bovine vagina, cervix and endometrium. However, stallion SP or bull SP collected by EE did not elicit this effect. Thus, results do not support a role for SP in modulating endometrial function to establish pregnancy in cattle.


Asunto(s)
Endometrio/metabolismo , Estabilidad del ARN , Semen/metabolismo , Manejo de Especímenes/métodos , Animales , Bovinos , Femenino , Regulación de la Expresión Génica , Caballos , Masculino , Ribonucleasas/metabolismo , Especificidad de la Especie
7.
Reproduction ; 158(1): 85-94, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31022701

RESUMEN

During its journey through the oviduct, the bovine embryo may induce transcriptomic and metabolic responses, via direct or indirect contact, from bovine oviduct epithelial cells (BOECs). An in vitro model using polyester mesh was established, allowing the study of the local contact during 48 h between a BOEC monolayer and early embryos (2- or 8-cell stage) or their respective conditioned media (CM). The transcriptomic response of BOEC to early embryos was assessed by analyzing the transcript abundance of SMAD6, TDGF1, ROCK1, ROCK2, SOCS3, PRELP and AGR3 selected from previous in vivo studies and GPX4, NFE2L2, SCN9A, EPSTI1 and IGFBP3 selected from in vitro studies. Moreover, metabolic analyses were performed on the media obtained from the co-culture. Results revealed that presence of early embryos or their CM altered the BOEC expression of NFE2L2, GPX4, SMAD6, IGFBP3, ROCK2 and SCN9A. However, the response of BOEC to two-cell embryos or their CM was different from that observed to eight-cell embryos or their CM. Analysis of energy substrates and amino acids revealed that BOEC metabolism was not affected by the presence of early embryos or by their CM. Interestingly, embryo metabolism before embryo genome activation (EGA) seems to be independent of exogenous sources of energy. In conclusion, this study confirms that early embryos affect BOEC transcriptome and BOEC response was embryo stage specific. Moreover, embryo affects BOEC via a direct contact or via its secretions. However transcriptomic response of BOEC to the embryo did not manifest as an observable metabolic response.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Epiteliales/metabolismo , Trompas Uterinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metaboloma , Oviductos/metabolismo , Transcriptoma , Animales , Bovinos , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Epiteliales/citología , Trompas Uterinas/citología , Femenino , Perfilación de la Expresión Génica , Oviductos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA