Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Signal ; 112: 110915, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838312

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the loss of upper and lower motor neurons. The sporadic ALS (sALS) is a multigenic disorder and the complex mechanisms underlying its onset are still not fully delineated. Despite the recent scientific advancements, certain aspects of ALS pathogenic targets need to be yet clarified. The aim of the presented study is to identify potential genetic biomarkers and drug targets for sALS, by analysing gene expression profiles, presented in the publicly available GSE68605 dataset, of motor neurons cells obtained from sALS patients. We used different computational approaches including differential expression analysis, protein network mapping, candidate protein biomarker (CPB) identification, elucidation of the role of functional modules, and molecular docking analysis. The resultant top ten up- and downregulated genes were further used to construct protein-protein interaction network (PPIN). The PPIN analysis resulted in identifying four CPBs (namely RIOK2, AKT1, CTNNB1, and TNF) that commonly overlapped with one another in network parameters (degree, bottleneck and maximum neighbourhood component). The RIOK2 protein emerged as a potential mediator of top five functional modules that are associated with RNA binding, lipoprotein particle receptor binding in pre-ribosome, and interferon, cytokine-mediated signaling pathway. Furthermore, molecular docking analysis revealed that cyclosporine exhibited the highest binding affinity (-8.6 kJ/mol) with RIOK2, and surpassed the FDA-approved ALS drugs, such as riluzole and edaravone. This suggested that cyclosporine may serve as a promising candidate for targeting RIOK2 downregulation observed in sALS patients. In order to validate our computational results, it is suggested that in vitro and in vivo studies may be conducted in future to provide a more detailed understanding of ALS diagnosis, prognosis, and therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ciclosporinas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Simulación del Acoplamiento Molecular , Proteínas , Biología Computacional , Biomarcadores , Ciclosporinas/uso terapéutico
2.
Front Physiol ; 14: 1034170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909245

RESUMEN

The renin-angiotensin system (RAS) plays a pivotal role in blood pressure regulation. In some cases, this steering mechanism is affected by various deleterious factors (mainly via the overactivation of the RAS) causing cardiovascular damage, including coronary heart disease (CHD) that can ultimately lead to chronic heart failure (CHF). This not only causes cardiovascular disability and absenteeism from work but also imposes significant healthcare costs globally. The incidence of cardiovascular diseases has escalated exponentially over the years with the major outcome in the form of CHD, stroke, and CHF. The involvement of the RAS in various diseases has been extensively researched with significant limelight on CHD. The RAS may trigger a cascade of events that lead to atherosclerotic mayhem, which causes CHD and related aggravation by damaging the endothelial lining of blood vessels via various inflammatory and oxidative stress pathways. Although there are various diagnostic tests and treatments available in the market, there is a constant need for the development of procedures and therapeutic strategies that increase patient compliance and reduce the associated side effects. This review highlights the advances in the diagnostic and treatment domains for CHD, which would help in subjugating the side effects caused by conventional therapy.

3.
Biotechnol Genet Eng Rev ; : 1-21, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36994810

RESUMEN

COVID-19 is a highly contagious disease caused by SARS-CoV-2. Currently, no vaccines or antiviral treatments are available to combat this deadly virus; however, precautions and some repurposed medicines are available to contain COVID-19. RNA-dependent RNA polymerase (RdRP) plays an important role in the replication or transcription of viral mechanisms. Approved antiviral drug such as Remdesivir has shown inhibitory activity against SARS-CoV-2 RdRP. The purpose of this study was to carry out a rational screening of natural products against SARS-CoV-2 RdRP, which may serve as a basis to develop a treatment option against COVID-19. For this purpose, a protein and structure conservation analysis of SARS-CoV-2 RdRP was performed to check mutations. A library of 15,000 phytochemicals was developed from literature review, ZINC database, PubChem and MPD3 database; and was used to performed molecular docking and molecular dynamics simulation (MD) analysis. The top-ranked compounds were subjected to pharmacokinetic and pharmacological studies. Among them, top 7 compounds (Spinasaponin A, Monotropane, Neohesperidoe, Posin, Docetaxel, Psychosaponin B2, Daphnodrine M, and Target Remedesvir) were noticed to interact with the active site residues. MD simulation in aqueous solution suggested conformational flexibility of loop regions in the complex to stabilize the docked inhibitors. Our study revealed that the studied compounds have potential to bind to the active site residues of SARS-CoV-2 RdRP. Although, this computational work is not experimentally determined but the structural information and selected compounds might help in the design of antiviral drugs targeting SAR-CoV-2 by inhibiting the activity of SARS-CoV-2 RdRP.

4.
Biotechnol Genet Eng Rev ; : 1-15, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597258

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family. It plays a significant role in the regulation of brain metabolic activity, modification of synaptic efficacy, and enhances neuronal survival. A common naturally occurring allelic variation, i.e. G196A (Val66 Met, rs6265) of the BDNF gene is implicated in neuroplasticity. This study analyzes its expression levels and determines the frequency of BDNF G196A gene polymorphism in women with Turner syndrome (TS) compared to the controls. This case-control study comprised 14 TS patients and 8 healthy individuals. The expression levels of BDNF gene in TS patients were checked by qPCR. For BDNF gene, a dynamic expression range along with the presence of G196A polymorphism was found across all TS patients. The effects of Val66 Met mutation on BDNF protein structure and function were studied by molecular dynamics simulations of wild and mutant (Val66 Met) forms. The analysis of different trajectories generated by simulation showed that there was a significant change in the protein structure due to Val66 Met polymorphism, which might lead to functional impairment. This is first time we are reporting the association of BDNF G196A gene polymorphism with TS risk. Our study suggests that in turner patients, BDNF G196A polymorphism may be an important genetic factor predisposing to neuroplasticity risk and can be exploited as diagnostic/prognostic marker for TS. Further study on a large number of TS samples will prove this point beyond doubts or otherwise enriching the much desired repertoire of personalized medicine.

5.
Cells ; 11(21)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359871

RESUMEN

Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.


Asunto(s)
Enfermedad de Huntington , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Animales , Enfermedades del Sistema Nervioso/terapia , Trasplante de Células Madre , Enfermedad de Huntington/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Motoras/patología
6.
Genes (Basel) ; 13(4)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456461

RESUMEN

Prostate cancer (PCa) is the most prevalent cancer (20%) in males and is accountable for a fifth (6.8%) cancer-related deaths in males globally. Smoking, obesity, race/ethnicity, diet, age, chemicals and radiation exposure, sexually transmitted diseases, etc. are among the most common risk factors for PCa. However, the basic change at the molecular level is the manifested confirmation of PCa. Thus, this study aims to evaluate the molecular signature for PCa in comparison to benign prostatic hyperplasia (BPH). Additionally, representation of differentially expressed genes (DEGs) are conducted with the help of some bioinformatics tools like DAVID, STRING, GEPIA, Cytoscape. The gene expression profile for the four data sets GSE55945, GSE104749, GSE46602, and GSE32571 was downloaded from NCBI, Gene Expression Omnibus (GEO). For the extracted DEGs, different types of analysis including functional and pathway enrichment analysis, protein-protein interaction (PPI) network construction, survival analysis and transcription factor (TF) prediction were conducted. We obtained 633 most significant upregulated genes and 1219 downregulated genes, and a sum total of 1852 DEGs were found from all four datasets after assessment. The key genes, including EGFR, MYC, VEGFA, and PTEN, are targeted by TF such as AR, Sp1, TP53, NF-KB1, STAT3, RELA. Moreover, miR-21-5p also found significantly associated with all the four key genes. Further, The Cancer Genome Atlas data (TCGA) independent database was used for validation of key genes EGFR, MYC, VEGFA, PTEN expression in prostate adenocarcinoma. All four key genes were found to be significantly correlated with overall survival in PCa. Therefore, the therapeutic target may be determined by the information of these key gene's findings for the diagnosis, prognosis and treatment of PCa.


Asunto(s)
Biología Computacional , Neoplasias de la Próstata , Biología Computacional/métodos , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Neoplasias de la Próstata/patología , Transcriptoma
7.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409426

RESUMEN

Cancer progression is linked to abnormal epigenetic alterations such as DNA methylation and histone modifications. Since epigenetic alterations, unlike genetic changes, are heritable and reversible, they have been considered as interesting targets for cancer prevention and therapy by dietary compounds such as luteolin. In this study, epigenetic modulatory behaviour of luteolin was analysed on HeLa cells. Various assays including colony forming and migration assays, followed by biochemical assays of epigenetic enzymes including DNA methyltransferase, histone methyl transferase, histone acetyl transferase, and histone deacetylases assays were performed. Furthermore, global DNA methylation and methylation-specific PCR for examining the methylation status of CpG promoters of various tumour suppressor genes (TSGs) and the expression of these TSGs at transcript and protein level were performed. It was observed that luteolin inhibited migration and colony formation in HeLa cells. It also modulated DNA methylation at promoters of TSGs and the enzymatic activity of DNMT, HDAC, HMT, and HAT and reduced the global DNA methylation. Decrease in methylation resulted in the reactivation of silenced tumour suppressor genes including FHIT, DAPK1, PTEN, CDH1, SOCS1, TIMPS, VHL, TP53, TP73, etc. Hence, luteolin-targeted epigenetic alterations provide a promising approach for cancer prevention and intervention.


Asunto(s)
Luteolina , Neoplasias , Metilación de ADN , Metilasas de Modificación del ADN/genética , Desmetilación , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Código de Histonas , Histona Desacetilasas/metabolismo , Humanos , Luteolina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
8.
J Pers Med ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35330393

RESUMEN

Lung cancer is one of the most invasive cancers affecting over a million of the population. Non-small cell lung cancer (NSCLC) constitutes up to 85% of all lung cancer cases, and therefore, it is essential to identify predictive biomarkers of NSCLC for therapeutic purposes. Here we use a network theoretical approach to investigate the complex behavior of the NSCLC gene-regulatory interactions. We have used eight NSCLC microarray datasets GSE19188, GSE118370, GSE10072, GSE101929, GSE7670, GSE33532, GSE31547, and GSE31210 and meta-analyzed them to find differentially expressed genes (DEGs) and further constructed a protein-protein interaction (PPI) network. We analyzed its topological properties and identified significant modules of the PPI network using cytoscape network analyzer and MCODE plug-in. From the PPI network, top ten genes of each of the six topological properties like closeness centrality, maximal clique centrality (MCC), Maximum Neighborhood Component (MNC), radiality, EPC (Edge Percolated Component) and bottleneck were considered for key regulator identification. We further compared them with top ten hub genes (those with the highest degrees) to find key regulator (KR) genes. We found that two genes, CDK1 and HSP90AA1, were common in the analysis suggesting a significant regulatory role of CDK1 and HSP90AA1 in non-small cell lung cancer. Our study using a network theoretical approach, as a summary, suggests CDK1 and HSP90AA1 as key regulator genes in complex NSCLC network.

9.
Biomolecules ; 12(3)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35327643

RESUMEN

Dementia-a syndrome affecting human cognition-is a major public health concern given to its rising prevalence worldwide. Though multiple research studies have analyzed disorders such as Alzheimer's disease and Frontotemporal dementia using a systems biology approach, a similar approach to dementia syndrome as a whole is required. In this study, we try to find the high-impact core regulating processes and factors involved in dementia's protein-protein interaction network. We also explore various aspects related to its stability and signal propagation. Using gene interaction databases such as STRING and GeneMANIA, a principal dementia network (PDN) consisting of 881 genes and 59,085 interactions was achieved. It was assortative in nature with hierarchical, scale-free topology enriched in various gene ontology (GO) categories and KEGG pathways, such as negative and positive regulation of apoptotic processes, macroautophagy, aging, response to drug, protein binding, etc. Using a clustering algorithm (Louvain method of modularity maximization) iteratively, we found a number of communities at different levels of hierarchy in PDN consisting of 95 "motif-localized hubs", out of which, 7 were present at deepest level and hence were key regulators (KRs) of PDN (HSP90AA1, HSP90AB1, EGFR, FYN, JUN, CELF2 and CTNNA3). In order to explore aspects of network's resilience, a knockout (of motif-localized hubs) experiment was carried out. It changed the network's topology from a hierarchal scale-free topology to scale-free, where independent clusters exhibited greater control. Additionally, network experiments on interaction of druggable genome and motif-localized hubs were carried out where UBC, EGFR, APP, CTNNB1, NTRK1, FN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were identified as hubs in the resultant network (RN). We finally concluded that stability and resilience of PDN highly relies on motif-localized hubs (especially those present at deeper levels), making them important therapeutic intervention candidates. HSP90AA1, involved in heat shock response (and its master regulator, i.e., HSF1), and EGFR are most important genes in pathology of dementia apart from KRs, given their presence as KRs as well as hubs in RN.


Asunto(s)
Demencia Frontotemporal , Mapas de Interacción de Proteínas , Análisis por Conglomerados , Receptores ErbB , Proteínas HSP90 de Choque Térmico , Humanos , Proteínas del Tejido Nervioso , Biología de Sistemas
10.
Front Aging Neurosci ; 13: 767493, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867295

RESUMEN

Abnormal accumulation of misfolded proteins in the endoplasmic reticulum and their aggregation causes inflammation and endoplasmic reticulum stress. This promotes accumulation of toxic proteins in the body tissues especially brain leading to manifestation of neurodegenerative diseases. The studies suggest that deregulation of proteostasis, particularly aberrant unfolded protein response (UPR) signaling, may be a common morbific process in the development of neurodegeneration. Curcumin, the mixture of low molecular weight polyphenolic compounds from turmeric, Curcuma longa has shown promising response to prevents many diseases including current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurodegenerative disorders. The UPR which correlates positively with neurodegenerative disorders were found affected by curcumin. In this review, we examine the evidence from many model systems illustrating how curcumin interacts with UPR and slows down the development of various neurodegenerative disorders (ND), e.g., Alzheimer's and Parkinson's diseases. The recent global increase in ND patients indicates that researchers and practitioners will need to develop a new pharmacological drug or treatment to manage and cure these neurodegenerative diseases.

11.
Front Genet ; 12: 768130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096000

RESUMEN

Purpose: Plant-derived phytochemicals have shown epigenetic modulatory effect in different types of cancer by reversing the pattern of DNA methylation and chromatin modulation, thereby restoring the function of silenced tumor-suppressor genes. In the present study, attempts have been made to explore chrysin-mediated epigenetic alterations in HeLa cells. Methods: Colony formation and migration assays followed by methylation-specific PCR for examining the methylation status of CpG promoters of various tumor-suppressor genes (TSGs) and the expression of these TSGs at the transcript and protein levels were performed. Furthermore, global DNA methylation; biochemical activities of DNA methyltransferases (DNMTs), histone methyl transferases (HMTs), histone deacetylases (HDACs), and histone acetyl transferases (HATs) along with the expression analysis of chromatin-modifying enzymes; and H3 and H4 histone modification marks analyses were performed after chrysin treatment. Results: The experimental analyses revealed that chrysin treatment encourages cytostatic behavior as well as inhibits the migration capacity of HeLa cells in a time- and dose-dependent manner. Chrysin reduces the methylation of various tumor-suppressor genes, leading to their reactivation at mRNA and protein levels. The expression levels of various chromatin-modifying enzymes viz DNMTs, HMTs, HDACs, and HATS were found to be decreased, and H3 and H4 histone modification marks were modulated too. Also, reduced global DNA methylation was observed following the treatment of chrysin. Conclusion: This study concludes that chrysin can be used as a potential epigenetic modifier for cancer treatment and warrants for further experimental validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...