Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 101: 341-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26471421

RESUMEN

Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 µM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 µM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 µM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 µM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 µM) and MK801 (10 µM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Memantina/farmacología , Sinapsis/efectos de los fármacos , Análisis de Varianza , Animales , Biofisica , Estimulantes del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
2.
Biol Psychiatry ; 79(5): 402-414, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26392130

RESUMEN

BACKGROUND: Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. METHODS: We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. RESULTS: We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. CONCLUSIONS: We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease.


Asunto(s)
Neuronas Colinérgicas/efectos de los fármacos , Dopamina/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/genética , alfa-Sinucleína/genética , Animales , Animales Modificados Genéticamente , Dependovirus , Modelos Animales de Enfermedad , Femenino , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Transgénicos , Neostriado/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Transmisión Sináptica
3.
Biol Psychiatry ; 77(2): 106-15, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24844602

RESUMEN

BACKGROUND: Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID), a common motor complication of current pharmacotherapy of Parkinson's disease. METHODS: Electrophysiological recordings were performed in mouse cortico-striatal slice preparation. Synaptic plasticity, such as long-term potentiation (LTP) and depotentiation, was investigated. Specific pharmacological inhibitors or genetic manipulations were used to modulate the Ras-extracellular signal-regulated kinase (Ras-ERK) pathway, a signal transduction cascade implicated in behavioral plasticity, and synaptic activity in different subpopulations of striatal neurons was measured. RESULTS: We found that the Ras-ERK pathway, is not only essential for long-term potentiation induced with a high frequency stimulation protocol (HFS-LTP) in the dorsal striatum, but also for its reversal, synaptic depotentiation. Ablation of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal activator of Ras proteins, causes a specific loss of HFS-LTP in the medium spiny neurons in the direct pathway without affecting LTP in the indirect pathway. Analysis of LTP in animals with unilateral 6-hydroxydopamine lesions (6-OHDA) rendered dyskinetic with chronic L-DOPA treatment reveals a complex, Ras-GRF1 and pathway-independent, apparently stochastic involvement of ERK. CONCLUSIONS: These data not only demonstrate a central role for Ras-ERK signaling in striatal LTP, depotentiation, and LTP restored after L-DOPA treatment but also disclose multifaceted synaptic adaptations occurring in response to dopaminergic denervation and pulsatile administration of L-DOPA.


Asunto(s)
Cuerpo Estriado/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Plasticidad Neuronal/fisiología , ras-GRF1/metabolismo , Animales , Antiparkinsonianos/toxicidad , Butadienos/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Levodopa/toxicidad , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nitrilos/farmacología , Oxidopamina , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Técnicas de Cultivo de Tejidos , ras-GRF1/genética
4.
Exp Neurol ; 261: 377-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25058044

RESUMEN

Parkinson's disease (PD) patients exhibit motor and non-motor symptoms that severely affect quality of life. Cognitive alterations in PD subjects have been related to both structural and functional hippocampal changes. Here we investigated the effects of the 6-hydroxydopamine (6-OHDA) lesion in the Medial Forebrain Bundle (MFB) on the hippocampus focusing on the Dentate Gyrus (DG). In vivo microdialysis measurements revealed that the 6-OHDA injection disrupts both dopaminergic and noradrenergic transmission in rat DG. In vitro electrophysiological recordings showed that these neurochemical alterations were accompanied by impairment of long-term depression (LTD) at medial perforant path/DG synapses. Furthermore, this alteration was reversed by l-DOPA treatment. Notably, the therapeutic effect of l-DOPA on LTD was blocked by the antagonism of ß-noradrenergic receptors, but not by dopamine D1 or D2 receptor antagonists. Thus, while the dopaminergic transmission does not seem to be implicated in this therapeutic effect of l-DOPA, the noradrenergic system plays a central role in the synaptic dysfunction of the DG in experimental PD. Our work provides new evidence on the role of catecholamines in DG synaptic plasticity and sheds light on the possible synaptic mechanisms underlying cognitive deficits in PD. Furthermore, our results indicate that l-DOPA exerts a therapeutic effect on the parkinsonian brain through different, coexistent, mechanisms.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Giro Dentado/patología , Levodopa/uso terapéutico , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Animales , Antiparkinsonianos/farmacología , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Estimulación Eléctrica , Lateralidad Funcional , Levodopa/farmacología , Masculino , Microdiálisis , Norepinefrina/metabolismo , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Wistar , Sulpirida/farmacología
5.
Exp Neurol ; 261: 320-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24858730

RESUMEN

We have analyzed the effects of environmental enrichment (EE) in a seizure-prone mouse model in which the genetic disruption of the presynaptic protein Bassoon leads to structural and functional alterations in the hippocampus and causes early spontaneous seizures mimicking human neurodevelopmental disorders. One-month EE starting at P21 reduced seizure severity, preserved long-term potentiation (LTP) and paired-pulse synaptic responses in the hippocampal CA1 neuronal population and prevented the reduction of spine density and dendrite branching of pyramidal neurons. These data demonstrate that EE exerts its therapeutic effect by normalizing multiple aspects of hippocampal function and provide experimental support for its use in the optimization of existent treatments.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Ambiente , Epilepsia/patología , Epilepsia/rehabilitación , Potenciación a Largo Plazo/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia/genética , Agonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Transgénicos , Mutación/genética , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Técnicas de Placa-Clamp , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
6.
Proc Natl Acad Sci U S A ; 110(46): E4375-84, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24170862

RESUMEN

Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/trasplante , Plasticidad Neuronal/fisiología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/terapia , Análisis de Varianza , Animales , Western Blotting , Dopamina/metabolismo , Embrión de Mamíferos/citología , Femenino , Inmunohistoquímica , Potenciación a Largo Plazo/fisiología , Actividad Motora/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
J Neurosci ; 33(39): 15425-31, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068811

RESUMEN

Corticostriatal terminals have presynaptic GABA(B) receptors that limit glutamate release, but how these receptors are activated by endogenous GABA released by different types of striatal neurons is still unknown. To address this issue, we used single and paired whole-cell recordings combined with stimulation of corticostriatal fibers in rats and mice. In the presence of opioid, GABA(A), and NK1 receptor antagonists, antidromic stimulation of a population of striatal projection neurons caused suppression of subsequently evoked EPSPs in projection neurons. These effects were larger at intervals of 500 ms than 1 or 2 s, and were fully blocked by the selective GABA(B) receptor antagonist CGP 52432. Bursts of spikes in individual projection neurons were not able to inhibit evoked EPSPs. Similarly, spikes in fast spiking interneurons and low-threshold spike interneurons failed to elicit detectable effects mediated by GABA(B) receptors. Conversely, spikes in individual neurogliaform interneurons suppressed evoked EPSPs, and these effects were blocked by CGP 52432. These results provide the first demonstration of how GABA(B) receptors are activated by endogenous GABA released by striatal neuronal types.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
8.
J Neurosci ; 32(49): 17921-31, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223310

RESUMEN

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson's disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment. D2-like receptor (D2R) agonists are a powerful clinical option as an alternative to L-DOPA, especially in the early stages of the disease, being associated to a reduced risk of dyskinesia development. D2R agonists also find considerable application in the advanced stages of PD, in conjunction with L-DOPA, which is used in this context at lower dosages, to delay the appearance and the extent of the motor complications. In advanced stages of PD, D2R agonists are often effective in delaying the appearance and the extent of motor complications. Despite the great attention paid to the family of D2R agonists, the main reasons underlying the reduced risk of dyskinesia have not yet been fully characterized. Here we show that the striatal NMDA/AMPAreceptor ratio and theAMPAreceptor subunit composition are altered in experimental parkinsonism in rats. Surprisingly, while L-DOPA fails to restore these critical synaptic alterations, chronic treatment with pramipexole is associated not only with a reduced risk of dyskinesia development but is also able to rebalance, in a dose-dependent fashion, the physiological synaptic parameters, thus providing new insights into the mechanisms of dyskinesia.


Asunto(s)
Cuerpo Estriado/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Trastornos Parkinsonianos/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Benzotiazoles/efectos adversos , Benzotiazoles/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Agonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Discinesia Inducida por Medicamentos/complicaciones , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Levodopa/efectos adversos , Levodopa/farmacología , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Pramipexol , Ratas , Ratas Wistar , Receptores de Dopamina D3/metabolismo
9.
Parkinsons Dis ; 2012: 358176, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666628

RESUMEN

In Parkinson's disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID.

10.
Exp Neurol ; 236(2): 395-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22569102

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) in humans increases levels of dopamine (DA) in the vicinity of highly active corticostriatal terminals suggesting its use to alleviate symptoms in Parkinson's disease (PD). However, the effects of rTMS on corticostriatal plasticity have not been explored. Here we show that a single-session of cortical rTMS using intermittent theta-burst stimulation (iTBS) pattern increases striatal excitability and rescues corticostriatal long-term depression (LTD) in a significant number of field excitatory postsynaptic potentials (fEPSP) recorded from hemiparkinsonian rats. These data indicate that cortical iTBS affects neuronal activity of subcortical regions, providing experimental evidence for its use in clinical settings.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Plasticidad Neuronal/fisiología , Trastornos Parkinsonianos/fisiopatología , Ritmo Teta/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Wistar
11.
J Biol Chem ; 287(22): 18103-14, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493505

RESUMEN

Dendritic spines of medium spiny neurons represent an essential site of information processing between NMDA and dopamine receptors in striatum. Even if activation of NMDA receptors in the striatum has important implications for synaptic plasticity and disease states, the contribution of specific NMDA receptor subunits still remains to be elucidated. Here, we show that treatment of corticostriatal slices with NR2A antagonist NVP-AAM077 or with NR2A blocking peptide induces a significant increase of spine head width. Sustained treatment with D1 receptor agonist (SKF38393) leads to a significant decrease of NR2A-containing NMDA receptors and to a concomitant increase of spine head width. Interestingly, co-treatment of corticostriatal slices with NR2A antagonist (NVP-AAM077) and D1 receptor agonist augmented the increase of dendritic spine head width as obtained with SKF38393. Conversely, NR2B antagonist (ifenprodil) blocked any morphological effect induced by D1 activation. These results indicate that alteration of NMDA receptor composition at the corticostriatal synapse contributes not only to the clinical features of disease states such as experimental parkinsonism but leads also to a functional and morphological outcome in dendritic spines of medium spiny neurons.


Asunto(s)
Cuerpo Estriado/metabolismo , Espinas Dendríticas/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Western Blotting , Cuerpo Estriado/citología , Agonistas de Dopamina/farmacología , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Receptores de Dopamina D1/agonistas
12.
Exp Neurol ; 232(2): 240-50, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21946266

RESUMEN

In Parkinson's disease (PD) progressive alteration of striatal N-methyl-D-aspartate receptors (NMDARs) signaling has emerged as a considerable factor for the onset of the adverse motor effects of long-term levodopa (l-DOPA) treatment. In this regard, the NMDAR channel blocker amantadine is so far the only drug available for clinical use that attenuates L-DOPA-induced dyskinesia (LID). In this study, we examined the influence of a basal corticostriatal hyper-glutamatergic transmission in the appearance of dyskinesia, using a genetic mouse model lacking D-Aspartate Oxidase (DDO) enzyme (Ddo(-/-) mice). We found that, in Ddo(-/-) mice, non-physiological, high levels of the endogenous free D-amino acids D-aspartate (D-Asp) and NMDA, known to stimulate NMDAR transmission, resulted in the loss of corticostriatal synaptic depotentiation and precocious expression of LID. Interestingly, the block of depotentiation precedes any change in dopaminergic transmission associated to 6-OHDA lesion and l-DOPA treatment. Indeed, lesioned mutant mice display physiological L-DOPA-dependent enhancement of striatal D1 receptor/PKA/protein phosphatase-1 and ERK signaling. Moreover, in line with synaptic rearrangements of NMDAR subunits occurring in dyskinetic animal models, a short L-DOPA treatment produces a dramatic and selective reduction of the NR2B subunit in the striatal post-synaptic fraction of Ddo(-/-) lesioned mutants but not in controls. These data indicate that a preexisting hyper-glutamatergic tone at NMDARs in Ddo(-/-) mice produce abnormal striatal synaptic changes that, in turn, facilitate the onset of LID.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido D-Aspártico/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , N-Metilaspartato/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Potenciales de Acción/fisiología , Animales , Antiparkinsonianos/toxicidad , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Discinesia Inducida por Medicamentos/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/fisiología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fosforilación/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Simpaticolíticos/toxicidad , Sinapsis/metabolismo , Sinapsis/patología
13.
J Neurosci ; 31(35): 12513-22, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880913

RESUMEN

Striatal medium spiny neurons (MSNs) are divided into two subpopulations exerting distinct effects on motor behavior. Transgenic mice carrying bacterial artificial chromosome (BAC) able to confer cell type-specific expression of enhanced green fluorescent protein (eGFP) for dopamine (DA) receptors have been developed to characterize differences between these subpopulations. Analysis of these mice, in contrast with original pioneering studies, showed that striatal long-term depression (LTD) was expressed in indirect but not in the direct pathway MSNs. To address this mismatch, we applied a new approach using combined BAC technology and receptor immunohistochemistry. We demonstrate that, in physiological conditions, DA-dependent LTD is expressed in both pathways showing that the lack of synaptic plasticity found in D(1) eGFP mice is associated to behavioral deficits. Our findings suggest caution in the use of this tool and indicate that the "striatal segregation" hypothesis might not explain all synaptic dysfunctions in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/patología , Dopamina/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/fisiología , Enfermedad de Parkinson/patología , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Fenómenos Biofísicos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Proteínas Fluorescentes Verdes/genética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/fisiopatología , Ratas , Ratas Wistar , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/deficiencia , Receptores de Dopamina D2/deficiencia , Sustancia P/metabolismo
14.
Brain ; 134(Pt 2): 375-87, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21183486

RESUMEN

The aim of the present study was to evaluate the role of the nitric oxide/cyclic guanosine monophosphate pathway in corticostriatal long-term depression induction in a model of levodopa-induced dyskinesia in experimental parkinsonism. Moreover, we have also analysed the possibility of targeting striatal phosphodiesterases to reduce levodopa-induced dyskinesia. To study synaptic plasticity in sham-operated rats and in 6-hydroxydopamine lesioned animals chronically treated with therapeutic doses of levodopa, recordings from striatal spiny neurons were taken using either intracellular recordings with sharp electrodes or whole-cell patch clamp techniques. Behavioural analysis of levodopa-induced abnormal involuntary movements was performed before and after the treatment with two different inhibitors of phosphodiesterases, zaprinast and UK-343664. Levodopa-induced dyskinesia was associated with the loss of long-term depression expression at glutamatergic striatal synapses onto spiny neurons. Both zaprinast and UK-343664 were able to rescue the induction of this form of synaptic plasticity via a mechanism requiring the modulation of intracellular cyclic guanosine monophosphate levels. This effect on synaptic plasticity was paralleled by a significant reduction of abnormal movements following intrastriatal injection of phosphodiesterase inhibitors. Our findings suggest that drugs selectively targeting phosphodiesterases can ameliorate levodopa-induced dyskinesia, possibly by restoring physiological synaptic plasticity in the striatum. Future studies exploring the possible therapeutic effects of phosphodiesterase inhibitors in non-human primate models of Parkinson's disease and the involvement of striatal synaptic plasticity in these effects remain necessary to validate this hypothesis.


Asunto(s)
Cuerpo Estriado/enzimología , Cuerpo Estriado/fisiología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/enzimología , Levodopa/efectos adversos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , GMP Cíclico/farmacología , GMP Cíclico/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Microinyecciones , Neuronas/fisiología , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Inhibidores de Fosfodiesterasa/administración & dosificación , Piperazinas/farmacología , Purinonas/farmacología , Pirimidinonas/farmacología , Ratas , Ratas Wistar
15.
J Neurosci ; 30(42): 14182-93, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20962239

RESUMEN

A correct interplay between dopamine (DA) and glutamate is essential for corticostriatal synaptic plasticity and motor activity. In an experimental model of Parkinson's disease (PD) obtained in rats, the complete depletion of striatal DA, mimicking advanced stages of the disease, results in the loss of both forms of striatal plasticity: long-term potentiation (LTP) and long-term depression (LTD). However, early PD stages are characterized by an incomplete reduction in striatal DA levels. The mechanism by which this incomplete reduction in DA level affects striatal synaptic plasticity and glutamatergic synapses is unknown. Here we present a model of early PD in which a partial denervation, causing mild motor deficits, selectively affects NMDA-dependent LTP but not LTD and dramatically alters NMDA receptor composition in the postsynaptic density. Our findings show that DA decrease influences corticostriatal synaptic plasticity depending on the level of depletion. The use of the TAT2A cell-permeable peptide, as an innovative therapeutic strategy in early PD, rescues physiological NMDA receptor composition, synaptic plasticity, and motor behavior.


Asunto(s)
Desnervación , Dopamina/fisiología , Neostriado/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Western Blotting , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Miembro Anterior/fisiología , Inmunohistoquímica , Masculino , Microinyecciones , Microscopía Confocal , Trastornos de la Destreza Motora/patología , Trastornos de la Destreza Motora/psicología , Neostriado/citología , Oxidopamina , Ratas , Ratas Wistar , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/biosíntesis , Sustancia Negra/fisiología , Simpaticolíticos , Tirosina 3-Monooxigenasa/metabolismo
16.
Exp Neurol ; 226(2): 328-31, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20854816

RESUMEN

The two complexes of the mammalian target of rapamycin (mTOR), mTORC1 and mTORC2, have central functions in the integration of both extracellular and intracellular signals that are also critical players in the induction of post-ischemic long-term potentiation (i-LTP), a pathological form of plasticity inducible in striatal medium spiny neurons (MSNs) after a brief episode of in vitro ischemia. To evaluate the involvement of mTOR complexes during ischemia we analyzed the time course of i-LTP by intracellular recordings of MSNs from corticostriatal slices incubated with 1µM mTOR inhibitor rapamycin. Although rapamycin did not affect the amplitude and duration of ischemia-induced membrane depolarization it fully prevented i-LTP, leaving unaffected the capability to undergo activity-dependent LTP following high-frequency stimulation of corticostriatal fibers. The present results argue for a role of mTOR complex in i-LTP and suggest that rapamycin, by selectively blocking i-LTP, represents a promising therapeutic tool to limit cellular damage after ischemic brain insult.


Asunto(s)
Isquemia Encefálica/patología , Cuerpo Estriado/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Potenciación a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sirolimus/farmacología , Animales , Biofisica , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glucosa/deficiencia , Hipoxia/patología , Hipoxia/fisiopatología , Masculino , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Serina-Treonina Quinasas TOR
17.
Neuropsychopharmacology ; 35(7): 1531-40, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20200504

RESUMEN

In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Receptor trkB/metabolismo , Ácido Valproico/uso terapéutico , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Calbindinas , Carbazoles/farmacología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Inhibidores Enzimáticos/farmacología , Epilepsia/genética , Epilepsia/patología , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Alcaloides Indólicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Plasticidad Neuronal/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Proteína G de Unión al Calcio S100/metabolismo
18.
Biochem Soc Trans ; 38(2): 493-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298209

RESUMEN

In neuronal circuits, memory storage depends on activity-dependent modifications in synaptic efficacy, such as LTD (long-term depression) and LTP (long-term potentiation), the two main forms of synaptic plasticity in the brain. In the nucleus striatum, LTD and LTP represent key cellular substrates for adaptive motor control and procedural memory. It has been suggested that their impairment could account for the onset and progression of motor symptoms of PD (Parkinson's disease), a neurodegenerative disorder characterized by the massive degeneration of dopaminergic neurons projecting to the striatum. In fact, a peculiar aspect of striatal plasticity is the modulation exerted by DA (dopamine) on LTP and LTD. Our understanding of these maladaptive forms of plasticity has mostly come from the electrophysiological, molecular and behavioural analyses of experimental animal models of PD. In PD, a host of cellular and synaptic changes occur in the striatum in response to the massive loss of DA innervation. Chronic L-dopa therapy restores physiological synaptic plasticity and behaviour in treated PD animals, but most of them, similarly to patients, exhibit a reduction in the efficacy of the drug and disabling AIMs (abnormal involuntary movements) defined, as a whole, as L-dopa-induced dyskinesia. In those animals experiencing AIMs, synaptic plasticity is altered and is paralleled by modifications in the postsynaptic compartment. In particular, dysfunctions in trafficking and subunit composition of NMDARs [NMDA (N-methyl-D-aspartate) receptors] on striatal efferent neurons result from chronic non-physiological dopaminergic stimulation and contribute to the pathogenesis of dyskinesias. According to these pathophysiological concepts, therapeutic strategies targeting signalling proteins coupled to NMDARs within striatal spiny neurons could represent new pharmaceutical interventions for PD and L-dopa-induced dyskinesia.


Asunto(s)
Enfermedad de Parkinson/fisiopatología , Sinapsis/fisiología , Animales , Antiparkinsonianos/efectos adversos , Antiparkinsonianos/uso terapéutico , Ganglios Basales/patología , Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Discinesias/etiología , Humanos , Levodopa/efectos adversos , Levodopa/uso terapéutico , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/patología , Transmisión Sináptica/fisiología
19.
Biol Psychiatry ; 67(6): 567-74, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20074705

RESUMEN

BACKGROUND: Memory impairment is commonly associated with epilepsy, and the use of antiepileptic drugs (AEDs) causes additional neuropsychologic deficits that are of particular concern in learning-age children and elderly patients. The aim of this study was to investigate hippocampal synaptic plasticity and morphology as well as hippocampal-dependent memory in physiologic conditions and in a genetic model of epilepsy following chronic treatment with the widely used AED valproic acid (VPA). METHODS: Mice lacking the presynaptic scaffolding protein Bassoon were used as a model of epilepsy. Electrophysiologic recordings were used to analyze basal glutamatergic synaptic transmission, paired-pulse facilitation, and activity-dependent long-term potentiation (LTP) in the CA1 area. Dendritic morphology and spine density were analyzed, and glutamate-related signaling was investigated by Western blot analysis. Social transmission of food preference test was used to investigate nonspatial hippocampal memory. RESULTS: VPA treatment significantly reduced seizures frequency and mortality in epileptic mice. Long-term potentiation was absent at CA1 synapses of untreated epileptic mutant mice that also showed significant dendritic abnormalities. Treatment with VPA rescued physiologic LTP but did not reverse morphological abnormalities and deficits in nonspatial hippocampal memory observed in mutant epileptic mice. Moreover, VPA was found to induce per se dendritic abnormalities and memory dysfunction in normal animals. CONCLUSIONS: The impairment of hippocampal synaptic plasticity in epileptic mice, rescued by VPA treatment, might represent the mechanism underlying epilepsy-induced memory deficits. Moreover, the demonstration that VPA induces morphologic alterations and impairment in specific hippocampal-dependent memory task might explain the detrimental effects of antiepileptic treatment on cognition in human subjects.


Asunto(s)
Anticonvulsivantes/efectos adversos , Epilepsia , Hipocampo/fisiopatología , Trastornos de la Memoria/etiología , Plasticidad Neuronal/efectos de los fármacos , Ácido Valproico/efectos adversos , Animales , Anticonvulsivantes/farmacología , Conducta Animal , Biofisica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica/métodos , Epilepsia/complicaciones , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Preferencias Alimentarias/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Guanilato-Quinasas , Hipocampo/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Plasticidad Neuronal/genética , Células Piramidales/patología , Células Piramidales/fisiología , Receptores de Glutamato/metabolismo , Conducta Social , Ácido Valproico/farmacología
20.
Eur J Neurosci ; 29(10): 1979-93, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19453636

RESUMEN

Recently, the striatum has been implicated in the spread of epileptic seizures. As the absence of functional scaffolding protein Bassoon in mutant mice is associated with the development of pronounced spontaneous seizures, we utilized this new genetic model of epilepsy to investigate seizure-induced changes in striatal synaptic plasticity. Mutant mice showed reduced long-term potentiation in striatal spiny neurons, associated with an altered N-methyl-D-aspartate (NMDA) receptor subunit distribution, whereas GABAergic fast-spiking (FS) interneurons showed NMDA-dependent short-term potentiation that was absent in wild-type animals. Alterations in the dendritic morphology of spiny neurons and in the number of FS interneurons were also observed. Early antiepileptic treatment with valproic acid reduced epileptic attacks and mortality, rescuing physiological striatal synaptic plasticity and NMDA receptor subunit composition. However, morphological alterations were not affected by antiepileptic treatment. Our results indicate that, in Bsn mutant mice, initial morphological alterations seem to reflect a more direct effect of the abnormal genotype, whereas plasticity changes are likely to be caused by the occurrence of repeated cortical seizures.


Asunto(s)
Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Epilepsia/patología , Epilepsia/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Epilepsia/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...